Search results for " atomic physics"

showing 10 items of 344 documents

Lifetimes and g-factors of the HFS states in H-like and Li-like bismuth

2018

The LIBELLE experiment performed at the experimental storage ring (ESR) at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt, Germany, has successfully determined the ground state hyperfine (HFS) splittings in hydrogen-like ($^{209}\rm{Bi}^{82+}$) and lithium-like ($^{209}\rm{Bi}^{80+}$) bismuth. The study of HFS transitions in highly charged ions enables precision tests of QED in extreme electric and magnetic fields otherwise not attainable in laboratory experiments. Besides the transition wavelengths the time resolved detection of fluorescence photons following the excitation of the ions by a pulsed laser system also allows to extract lifetimes of the upper HFS levels and g-fac…

IONSGeneral PhysicsAtomic Physics (physics.atom-ph)0205 Optical PhysicsFOS: Physical scienceschemistry.chemical_elementg-factorsElectronPhysics Atomic Molecular & ChemicalHYPERFINE01 natural sciencesPhysics - Atomic PhysicsIonBismuth0103 physical sciences0307 Theoretical and Computational ChemistryPhysics::Atomic Physicshyperfine transitions010306 general physicsHyperfine structurePrecision tests of QEDPhysicsScience & Technology010308 nuclear & particles physicsPhysicsOpticsCondensed Matter PhysicsAtomic and Molecular Physics and OpticsMagnetic fieldchemistryPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicslifetimesAtomic physicsGround statehighly charged ionsExcitationJournal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Mobility of the Singly-Charged Lanthanide and Actinide Cations: Trends and Perspectives

2020

The current status of gaseous transport studies of the singly-charged lanthanide and actinide ions is reviewed in light of potential applications to superheavy ions. The measurements and calculations for the mobility of lanthanide ions in He and Ar agree well, and they are remarkably sensitive to the electronic configuration of the ion, namely, whether the outer electronic shells are 6s, 5d6s or 6s$^2$. The previous theoretical work is extended here to ions of the actinide family with zero electron orbital momentum: Ac$^+$ (7s$^2$, $^1$S), Am$^+$ (5f$^7$7s $^9$S$^\circ$), Cm$^+$ (5f$^7$7s$^2$ $^8$S$^\circ$), No$^+$ (5f$^{14}$7s $^2$S) and Lr$^+$ (5f$^{14}$7s$^2$ $^1$S). The calculations rev…

LanthanideAtomic Physics (physics.atom-ph)Ab initioFOS: Physical sciences02 engineering and technologyElectroninteraction potential010402 general chemistry7. Clean energy01 natural sciencesPhysics - Atomic PhysicsIonlcsh:Chemistryion mobilityAtomlanthanideselectronic configurationOriginal ResearchPhysicsIonic radiussuperheavy ionsactinidesGeneral ChemistryActinide021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesChemistrylcsh:QD1-999ddc:540Electron configurationAtomic physics0210 nano-technology
researchProduct

Measurement of the Permanent Electric Dipole Moment of the $^{129}$Xe Atom

2019

We report on a measurement of the $CP$-violating permanent electric dipole moment (EDM) of the neutral $^{129}\mathrm{Xe}$ atom. Our experimental approach is based on the detection of the free precession of co-located nuclear spin-polarized $^{3}\mathrm{He}$ and $^{129}\mathrm{Xe}$ samples. The EDM measurement sensitivity benefits strongly from long spin coherence times of several hours achieved in diluted gases and homogeneous weak magnetic fields of about 400 nT. A finite EDM is indicated by a change in the precession frequency, as an electric field is periodically reversed with respect to the magnetic guiding field. Our result $(\ensuremath{-}4.7\ifmmode\pm\else\textpm\fi{}6.4)\ifmmode\t…

Larmor precessionPhysicsField (physics)Atomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciences010305 fluids & plasmasMagnetic fieldPhysics - Atomic PhysicsElectric dipole momentElectric field0103 physical sciencesAtomddc:530Sensitivity (control systems)Atomic physics010306 general physicsSpin (physics)
researchProduct

Suppression of nonlinear Zeeman effect and heading error in earth-field-range alkali-vapor magnetometers

2018

The nonlinear Zeeman effect can induce splitting and asymmetries of magnetic-resonance lines in the geophysical magnetic field range. This is a major source of "heading error" for scalar atomic magnetometers. We demonstrate a method to suppress the nonlinear Zeeman effect and heading error based on spin locking. In an all-optical synchronously pumped magnetometer with separate pump and probe beams, we apply a radio-frequency field which is in-phase with the precessing magnetization. In an earth-range field, a multi-component asymmetric magnetic-resonance line with ? 60 Hz width collapses into a single peak with a width of 22 Hz, whose position is largely independent of the orientation of th…

MagnetometerAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences02 engineering and technology01 natural scienceslaw.inventionPhysics - Atomic Physicssymbols.namesakeMagnetizationOpticslaw0103 physical sciences010306 general physicsPhysicsZeeman effectbusiness.industryLimiting021001 nanoscience & nanotechnologyAlkali metalComputational physicsNonlinear systemAmplitudesymbols0210 nano-technologybusiness
researchProduct

Micro lensing induced lineshapes in a single mode cold-atom hollow-core fiber interface

2018

We report on the observation of strong transmission line shape alterations in a cold-atom-hollow-core-fiber interface. We show that this can lead to a significant overestimation of the assigned resonant optical depth for high atom densities. By modeling light beam propagation in an inhomogeneous dispersive medium, we attribute the observations to micro lensing in the atomic ensemble in combination with the mode selection of the atom-fiber interface. The approach is confirmed by studies of Rydberg electromagnetically induced transparency line shapes.

Materials scienceAtomic Physics (physics.atom-ph)Electromagnetically induced transparencyFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciencesMolecular physicsPhysics - Atomic Physicssymbols.namesakeOpticsTransmission lineUltracold atom0103 physical sciencesAtomLight beamPhysics::Atomic Physics010306 general physicsLine (formation)Condensed Matter::Quantum GasesQuantum Physicsbusiness.industrySingle-mode optical fiber021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsRydberg formulasymbolsQuantum Physics (quant-ph)0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

A single-atom heat engine

2015

Making a teeny tiny engine Steam locomotives, cars, and the drinking bird toy all convert heat into useful work as it cycles between two reservoirs at different temperatures. Usually, the working substance where the heat-work conversion occurs is a liquid or a gas, consisting of many molecules. Roβnagel et al. have made a working substance of a single calcium ion in a tapered ion trap. A laser-cooling beam plays the part of a cold reservoir for the calcium ion, and in turn, electric field noise acts as a hot reservoir. Science , this issue p. 325

Materials scienceAtomic Physics (physics.atom-ph)FOS: Physical sciences01 natural sciencesphysics.atom-phPhysics - Atomic Physics010305 fluids & plasmasIonquant-phThermodynamic cycle0103 physical sciencesThermal010306 general physicscond-mat.stat-mechCondensed Matter - Statistical MechanicsHeat engineCouplingQuantum PhysicsMultidisciplinaryStatistical Mechanics (cond-mat.stat-mech)business.industryMechanicsPower (physics)Ion trapQuantum Physics (quant-ph)businessThermal energy
researchProduct

Spiking dynamics of frequency up-converted field generated in continuous-wave excited rubidium vapours

2020

We report on spiking dynamics of frequency up-converted emission at 420 nm generated on the 6P3/2-5S1/2 transition in Rb vapour two-photon excited to the 5D5/2 level with laser light at 780 and 776 nm. The spike duration is less than the natural lifetime of any excited level involved in the interaction with both continuous and pulsed pump radiation. The spikes at 420 nm are attributed to temporal properties of the directional emission at 5.23 {\mu}m generated on the population inverted 5D5/2-6P3/2 transition. A link between the spiking regime and cooperative effects is discussed. We suggest that the observed stochastic behaviour is due to the quantum-mechanical nature of the cooperative eff…

Materials scienceField (physics)Atomic Physics (physics.atom-ph)chemistry.chemical_elementFOS: Physical sciencesRadiation01 natural sciencesRubidiumlaw.inventionPhysics - Atomic Physics010309 opticslaw0103 physical sciencesQuantum PhysicsDynamics (mechanics)Statistical and Nonlinear PhysicsLaserAtomic and Molecular Physics and OpticschemistryExcited stateContinuous waveAtomic physicsQuantum Physics (quant-ph)Visible spectrumOptics (physics.optics)Physics - Optics
researchProduct

Stand-Off Magnetometry with Directional Emission from Sodium Vapors

2021

International audience; Stand-off magnetometry allows measuring magnetic field at a distance, and can be employed in geophysical research, hazardous environment monitoring, and security applications. Stand-off magnetometry based on resonant scattering from atoms or molecules is often limited by the scarce amounts of detected light. The situation would be dramatically improved if the light emitted by excited atoms were to propagate towards the excitation light source in a directional manner. Here, we demonstrate that this is possible by means of mirrorless lasing. In a tabletop experiment, we detect free-precession signals of ground-state sodium spins under the influence of an external magne…

Materials scienceField (physics)MagnetometerAtomic Physics (physics.atom-ph)General Physics and AstronomyFOS: Physical sciences01 natural sciences010305 fluids & plasmaslaw.inventionPhysics - Atomic Physics03 medical and health sciencesOpticslaw0103 physical sciencesddc:530030304 developmental biology0303 health sciencesSpins[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]business.industryScalar (physics)Magnetic field[SDU]Sciences of the Universe [physics]Excited statebusinessLasing thresholdExcitation
researchProduct

Intensity-correlated spiking of infrared and ultraviolet emission from sodium vapors

2021

The directional spiking infrared and ultraviolet emission from sodium vapors excited to the 4D5/2 level by a continuous-wave resonant laser pump, that constitute a novel feature of the cooperative effects, has been analyzed. Cascade mirrorless lasing at 2207 and 2338 nm on population-inverted transitions and ultraviolet radiation at 330 nm that is generated due to four-wave mixing process demonstrate a high degree of intensity correlation.

Materials scienceInfraredAtomic Physics (physics.atom-ph)FOS: Physical sciencesLaser pumpingRadiationmedicine.disease_cause01 natural sciencesPhysics - Atomic Physics010309 opticsOptics0103 physical sciencesmedicineSpontaneous emission010306 general physicsQuantum Physics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]business.industryAtomic and Molecular Physics and Optics3. Good healthCascadeExcited stateAtomic physicsbusinessQuantum Physics (quant-ph)Lasing thresholdUltravioletOptics (physics.optics)Physics - OpticsOptics Letters
researchProduct

Polychromatic, continuous-wave mirrorless lasing from monochromatic pumping of cesium vapor

2019

We report on studies of simultaneous continuous-wave mirrorless lasing on multiple optical transitions, realized by pumping hot cesium vapor with laser light resonant with the 6$S_{1/2}\rightarrow 8$P$_{3/2}$ transition. The multiplicity of decay paths for the excited atoms to their ground state is responsible for the emergence of lasing in a number of transitions, observed here in at least seven wavelengths in the infrared (IR), and at two wavelengths in the blue. We study the properties of the fields generated in the cesium vapor, such as optical power, directionality and optical linewidth.

Materials scienceInfraredAtomic Physics (physics.atom-ph)FOS: Physical sciencesPhysics::OpticsOptical power02 engineering and technology01 natural sciencesPhysics - Atomic Physics010309 opticsLaser linewidthOptics0103 physical sciencesPhysics::Atomic Physicsbusiness.industry021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsWavelengthExcited stateContinuous waveMonochromatic color0210 nano-technologybusinessLasing thresholdOptics (physics.optics)Physics - Optics
researchProduct