Search results for " atomic physics"
showing 10 items of 344 documents
Rubidium dimers in paraffin-coated cells
2010
Measurements were made to determine the density of rubidium dimer vapor in paraffin-coated cells. The number density of dimers and atoms in similar paraffin-coated and uncoated cells was measured by optical spectroscopy. Due to the relatively low melting point of paraffin, a limited temperature range of 43-80 deg C was explored, with the lower end corresponding to a dimer density of less than 10^7 cm^(-3). With one-minute integration time, a sensitivity to dimer number density of better than 10^6 cm^(-3) was achieved. No significant difference in dimer density was observed between the cells.
Simulating pump-probe photo-electron and absorption spectroscopy on the attosecond time-scale with time-dependent density-functional theory
2013
Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experimen…
Hyperfine Paschen-Back regime realized in Rb nanocell
2012
A simple and efficient scheme based on one-dimensional nanometric thin cell filled with Rb and strong permanent ring magnets allowed direct observation of hyperfine Paschen-Back regime on D1 line in 0.5 - 0.7 T magnetic field. Experimental results are perfectly consistent with the theory. In particular, with sigma+ laser excitation, the slopes of B-field dependence of frequency shift for all the 10 individual transitions of 85,87Rb are the same and equal to 18.6 MHz/mT. Possible applications for magnetometry with submicron spatial resolution and tunable atomic frequency references are discussed.
Isotope Shifts of Radium Monofluoride Molecules
2021
Isotope shifts of $^{223-226,228}$Ra$^{19}$F were measured for different vibrational levels in the electronic transition $A^{2}{}{\Pi}_{1/2}\leftarrow X^{2}{}{\Sigma}^{+}$. The observed isotope shifts demonstrate the particularly high sensitivity of radium monofluoride to nuclear size effects, offering a stringent test of models describing the electronic density within the radium nucleus. Ab initio quantum chemical calculations are in excellent agreement with experimental observations. These results highlight some of the unique opportunities that short-lived molecules could offer in nuclear structure and in fundamental symmetry studies.
The proton radius puzzle
2017
High-precision measurements of the proton radius from laser spectroscopy of muonic hydrogen demonstrated up to six standard deviations smaller values than obtained from electron-proton scattering and hydrogen spectroscopy. The status of this discrepancy, which is known as the proton radius puzzle will be discussed in this paper, complemented with the new insights obtained from spectroscopy of muonic deuterium.
Residual Phase Noise Measurement of Optical Second Harmonic Generation in PPLN Waveguides
2017
We report on the characterization, including residual phase noise and fractional frequency instability, of fiber-coupled PPLN non-linear crystals. These components are devoted to frequency doubling 871 nm light from an extended-cavity diode laser to produce a 435.5 nm beam, corresponding to the ytterbium ion electric quadrupole clock transition. We measure doubling efficiencies of up to 117.5 %/W. Using a Mach-Zehnder interferometer and an original noise rejection technique, the residual phase noise of the doublers is estimated to be lower than ${\rm -35\, dBrad^2/Hz}$ at 1 Hz, making these modules compatible with up-to-date optical clocks and ultra-stable cavities. The influence of externa…
Phase-Noise and Amplitude-Noise Measurement of DACs and DDSs
2019
This article proposes a method for the measurement of Phase Noise (PN, or PM noise) and Amplitude Noise (AN, or AM noise) of Digital-to-Analog Converters (DAC) and Direct Digital Synthesizers (DDS) based on modulation-index amplification. The carrier is first reduced by a controlled amount (30-40 dB) by adding a reference signal of nearly equal amplitude and opposite in phase. Then, residual carrier and noise sidebands are amplified and sent to a conventional PN analyzer. The main virtues of our method are: (i) the noise specs of the PN analyzer are relaxed by a factor equal to the carrier suppression ratio; and, (ii) the capability to measure the AN using a PN analyzer, with no need for th…
Search for Axionlike Dark Matter through Nuclear Spin Precession in Electric and Magnetic Fields
2017
We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spinprecession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10−24 ≤ ma ≤ 10−17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40. ispartof: Physical Review X vol:7 issue:…
Optically pumped Cs magnetometers enabling a high-sensitivity search for the neutron electric dipole moment
2020
An array of 16 laser-pumped scalar Cs magnetometers was part of the neutron electric dipole moment (nEDM) experiment taking data at the Paul Scherrer Institute in 2015 and 2016. It was deployed to measure the gradients of the experiment's magnetic field and to monitor their temporal evolution. The originality of the array lies in its compact design, in which a single near-infrared diode laser drives all magnetometers that are located in a high-vacuum chamber, with a selection of the sensors mounted on a high-voltage electrode. We describe details of the Cs sensors' construction and modes of operation, emphasizing the accuracy and sensitivity of the magnetic-field readout. We present two app…
Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating
2017
© 2017 Author(s). Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.