Search results for " collision"

showing 10 items of 629 documents

Search for neutral MSSM Higgs bosons at LEP

2006

The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for the neutral Higgs bosons which are predicted by the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and examined for their consistency with the background hypothesis and with a possible Higgs boson signal. The combined LEP data show no significant excess of events which would indicate the production of Higgs bosons. The search results are used to set upper bounds on the cross-sections of various Higgs-like event topologies. The results are interpreted within the MSSM in a number of "benchmark" models, including CP-conserving and CP-violating scenarios. Thes…

AlephPARTICLE PHYSICS; LARGE ELECTRON POSITRON COLLIDER; ALEPH; DELPHI; L3; OPALPhysics and Astronomy (miscellaneous)Parameter space01 natural sciencesOPAL DETECTORHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Event (probability theory)BosonPhysicsEXPLICIT CP VIOLATIONROOT-S=189 GEVOPALFLAVOR INDEPENDENT SEARCHParticle physics - ExperimentPhysicsSettore FIS/01 - Fisica SperimentaleHiggs particle. search forSUPERGAUGE TRANSFORMATIONSALEPHLARGE ELECTRON POSITRON COLLIDERALEPH DELPHI L3 OPALSUPERSYMMETRIC STANDARD MODELROOT-SL3Higgs bosonPARTICLE PHYSICSParticle physicselectron positron. colliding beamselectron positron. annihilationFOS: Physical sciencessupersymmetric standard model;; explicit cp violation;; electric-dipole moment;; e(+)e(-) collisions;; root-s=189 gev;; opal detector;; root-s;; z(0) decays;; supergauge transformations;; radiative-correctionsHiggs particle. electroproductionddc:500.2-SUPERSYMMETRIC STANDARD MODEL; EXPLICIT CP VIOLATION; FLAVOR INDEPENDENT SEARCH; ELECTRIC-DIPOLE MOMENT; E(+)E(-) COLLISIONS; ROOT-S; ROOT-S=189 GEV; OPAL DETECTOR; Z(0) DECAYS; SUPERGAUGE TRANSFORMATIONSHiggs particleLEP colliderNext-to-Minimal Supersymmetric Standard ModelELECTRIC-DIPOLE MOMENTE(+)E(-) COLLISIONSConsistency (statistics)0103 physical sciencesddc:530High Energy Physics010306 general physicsEngineering (miscellaneous)DELPHIelectron positron010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHiggs BosonLEPHIGGSHiggs boson standard modelZ(0) DECAYSExperimental High Energy PhysicsHigh Energy Physics::ExperimentHiggs Boson; LEP colliderMSSMMinimal Supersymmetric Standard ModelHiggs
researchProduct

Constraints on jet quenching in p–Pb collisions at √sNN = 5.02 TeV measured by the event-activity dependence of semi-inclusive hadron-jet distributio…

2018

The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets recoiling from a high-transverse momentum trigger hadron in p–Pb collisions at √sNN = 5.02 TeV. Jets are reconstructed from charged-particle tracks using the anti-kT algorithm with resolution parameter R = 0.2 and 0.4. A data-driven statistical approach is used to correct the uncorrelated background jet yield. Recoil jet distributions are reported for jet transverse momentum 15 < pch T,jet < 50 GeV/c and are compared in various intervals of p–Pb event activity, based on charged-particle multiplicity and zero-degree neutral energy in the forward (Pb-going) direction. The semi-inclusive ob…

Astrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::Experimentheavy-ion collisionsNuclear Experiment
researchProduct

Search for microscopic black holes in a like-sign dimuon final state using large track multiplicity with the ATLAS detector

2013

A search is presented for microscopic black holes in a like-sign dimuon final state in proton-proton collisions at √s= 8 TeV. The data were collected with the ATLAS detector at the Large Hadron Collider in 2012 and correspond to an integrated luminosity of 20.3 fb-1. Using a high track multiplicity requirement, 0.6±0.2 background events from Standard Model processes are predicted and none observed. This result is interpreted in the context of low-scale gravity models and 95% CL lower limits on microscopic black hole masses are set for different model assumptions.

Atlas detectorCiencias FísicasNuclear TheoryHadronDimensions01 natural sciencesHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)Micro black hole[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QANuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsLarge Hadron ColliderLARGE EXTRA DIMENSIONSSettore FIS/01 - Fisica Sperimentaleblack holes; ATLAS detector; microscopicATLASPhysical SciencesLHCParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2530Nuclear physics0103 physical sciencesFysikddc:530High Energy PhysicsMultiplicity (chemistry)010306 general physicsCiencias ExactasScience & TechnologyATLAS detector010308 nuclear & particles physicsMillimeterFísica//purl.org/becyt/ford/1.3 [https]black holesAstronomíaBlack holeHADRON-HADRON COLLISIONSExperimental High Energy PhysicsTevPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentGravity SignaturesPHYSICAL REVIEW D
researchProduct

Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC

2011

Measurements are presented from proton–proton collisions at centre-of-mass energies of \sqrt{s} = 0.9 , 2.36 and 7 TeV recorded with the ATLAS detector at the LHC. Events were collected using a single-arm minimum-bias trigger. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the relationship between the mean transverse momentum and charged-particle multiplicity are measured. Measurements in different regions of phase space are shown, providing diffraction-reduced measurements as well as more inclusive ones. The observed distributions are corrected to well-defined phase-space regions, using model-independent corrections. The results are compared…

Atlas detectorMonte Carlo methodLarge hadron colliderNuclear physicsGeneral Physics and Astronomy01 natural sciencesTransverse-Momentum SpectraHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Pseudorapidity[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CollisionsQANuclear ExperimentTransverse momentumQCPhysicsLarge Hadron ColliderPhysicsSettore FIS/01 - Fisica SperimentaleParticle physicsATLAS detector; LHC; pp collisionsATLASSquare-Root-SMonte carlo methodCharged particle3. Good healthPseudorapidityddc:540ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGTsallis distributionFísica nuclearDistributionsLHCpp collisionsParticle Physics - ExperimentParticle physicsCiências Naturais::Ciências FísicasAtlas detector:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesCharged particleInclusive production with identified hadronsPhase spaceddc:500.2530Nuclear physics0103 physical sciencesddc:530High Energy Physics010306 general physicsATLAS detector010308 nuclear & particles physicsFísicaMultiplicity (mathematics)Perturbative calculationsMultiplicity (mathematics)pp interactions; LHC; ATLAS detectorPhase spaceHADRON-HADRON COLLISIONSExperimental High Energy PhysicsCM EnergiesTevHigh Energy Physics::ExperimentCollider
researchProduct

ATLAS measurements of the properties of jets for boosted particle searches

2012

Measurements are presented of the properties of high transverse momentum jets, produced in proton-proton collisions at a center-of-mass energy of √s=7  TeV. The data correspond to an integrated luminosity of 35  pb−1 and were collected with the ATLAS detector in 2010. Jet mass, width, eccentricity, planar flow and angularity are measured for jets reconstructed using the anti-kt algorithm with distance parameters R=0.6 and 1.0, with transverse momentum pT>300  GeV and pseudorapidity |η|<2. The measurements are compared to the expectations of Monte Carlo generators that match leading-logarithmic parton showers to leading-order, or next-to-leading-order, matrix elements. The generators describ…

Atlas detectorMonte Carlo methodParton7. Clean energy01 natural sciencesNucleonHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentNUCLEONATLAS; jets; boostedQCDetectors de radiacióQuantum chromodynamicsPhysicsLarge Hadron ColliderAcceleradors de partículesSettore FIS/01 - Fisica SperimentaleATLASINCLUSIVE JET CROSS SECTIONLarge Hadron ColliderPseudorapidityTransverse momentumComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCFRAGMENTATIONNucleonParticle Physics - ExperimentjetsNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 PhysicsAstrophysics::High Energy Astrophysical Phenomena:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2530Partícules (Física nuclear)Proton-proton collisionsNuclear physics0103 physical sciencesddc:530High Energy Physics010306 general physicsCiencias ExactasScience & TechnologyATLAS detector010308 nuclear & particles physicsFísicaMODELHADRON-HADRON COLLISIONSCol·lisions (Física nuclear)PARTON DISTRIBUTIONSExperimental High Energy PhysicsHigh Energy Physics::ExperimentModel
researchProduct

Search for excited electrons and muons in root s=8 TeV proton-proton collisions with the ATLAS detector

2013

The ATLAS detector at the Large Hadron Collider is used to search for excited electrons and excited muons in the channel pp → ℓℓ* → ℓℓγ, assuming that excited leptons are produced via contact interactions. The analysis is based on 13 fb[superscript −1] of pp collisions at a centre-of-mass energy of 8 TeV. No evidence for excited leptons is found, and a limit is set at the 95% credibility level on the cross section times branching ratio as a function of the excited-lepton mass m[subscript ℓ*]. For m[subscript ℓ*] ≥ 0.8 TeV, the respective upper limits on σB(ℓ* → ℓγ) are 0.75 and 0.90 fb for the e* and μ* searches. Limits on σB are converted into lower bounds on the compositeness scale Λ. In …

Atlas detectorPhysics::Instrumentation and DetectorsCiencias FísicasGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - Experiment//purl.org/becyt/ford/1 [https]High Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]QCPhysicsddc:539Excited leptonsLarge Hadron ColliderLepton ProductionSettore FIS/01 - Fisica SperimentaleBranching ratioHERAATLASLarge Hadron ColliderExcited statePhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGQuarkLHCContact interactionExcited electronsParticle Physics - ExperimentCIENCIAS NATURALES Y EXACTASQuarkParticle physicsCiências Naturais::Ciências Físicas530 PhysicsParticle physics and field theory:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2excited electrons; muons; proton–proton collisions; ATLAS detector530Nuclear physics0103 physical sciencesFysikddc:530High Energy Physics010306 general physicsCentre-of-mass energiesCiencias ExactasHeraScience & TechnologyMuonATLAS detectorProton proton collisions010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyATLAS detectorsFísica//purl.org/becyt/ford/1.3 [https]AstronomíaHADRON-HADRON COLLISIONSExperimental High Energy PhysicsEp CollisionsHigh Energy Physics::Experimentproton-proton collisionsLepton
researchProduct

Search for strong gravity signatures in same-sign dimuon final states using the ATLAS detector at the LHC

2012

A search for microscopic black holes has been performed in a same-sign dimuon final state using 1.3 fb[superscript −1] of proton–proton collision data collected with the ATLAS detector at a centre of mass energy of 7 TeV at the CERN Large Hadron Collider. The data are found to be consistent with the expectation from the Standard Model and the results are used to derive exclusion contours in the context of a low scale gravity model.

Atlas detectorPhysics::Instrumentation and DetectorsHadron01 natural sciencesHigh Energy Physics - ExperimentMicro black holeHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear ExperimentDetectors de radiacióPhysicsINTERAÇÕES NUCLEARESLarge Hadron ColliderBLACK HOLEAtlas (topology)Strong gravityAcceleradors de partículesExtra DimensionsSettore FIS/01 - Fisica SperimentaleMicroscopic black holesATLASExtra dimensionsLarge Hadron ColliderComputingMethodologies_DOCUMENTANDTEXTPROCESSINGExtra dimensionsAtlasLHCParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsDIMENSIONSCOLLISIONSSame-sign dimuonsCiências Naturais::Ciências Físicas:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesddc:500.2GRAVITY ON BRANE WORLDS530Partícules (Física nuclear)Nuclear physics0103 physical sciencesddc:530High Energy Physics010306 general physicsBLACK-HOLESMILLIMETERCiencias ExactasScience & TechnologyROOT-S=7 TEVATLAS detector010308 nuclear & particles physicssame-sign dimuons; microscopic black holes; extra dimensions; lhc; atlasFísicaCollisionLHC; ATLAS; Microscopic black holes; Extra dimensions; Same-sign dimuonsHADRON-HADRON COLLISIONSCol·lisions (Física nuclear)Experimental High Energy PhysicsPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Measurement of the distributions of event-by-event flow harmonics in lead-lead collisions at = 2.76 TeV with the ATLAS detector at the LHC

2013

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portu…

Atlas detectorUnfolding01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)Heavy-ion collisionNaturvetenskap[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)RELATIVISTIC HEAVY-ION COLLISIONSNuclear ExperimentNuclear ExperimentQCunfoldingPhysicsLarge Hadron ColliderAtlas (topology)4. EducationSettore FIS/01 - Fisica SperimentaleEvent-By-Event FluctuationElliptic flowHeavy-Ion CollisionsHarmonic FlowCharged particlehadron-hadron scattering; harmonic flow; event-by-event fluctuation; unfolding; heavy-ion collisionHarmonicsImpact parameterNatural Sciencesharmonic flowParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsCiências Naturais::Ciências Físicas530 Physics:Ciências Físicas [Ciências Naturais]FOS: Physical sciencesComputer Science::Digital Libraries530Nuclear physics0103 physical sciencesHeavy ion collisionsddc:530Rapidity010306 general physicsevent-by-event fluctuationCiencias ExactasScience & TechnologyHadron-Hadron Scattering010308 nuclear & particles physicsFísicaheavy ion collisionHeavy-ion collision; harmonic flow; event-by-event fluctuation; unfolding; Hadron-Hadron Scattering
researchProduct

Thermomechanical modeling of slab eduction

2012

[1] Plate eduction is a geodynamic process characterized by normal-sense coherent motion of previously subducted continental plate. This mechanism may occur after slab detachment has separated the negatively buoyant oceanic plate from the positively buoyant orogenic root. Eduction may therefore be partly responsible for exhumation of high pressure rocks and late orogenic extension. We used two-dimensional thermomechanical modeling to investigate the main features of the plate eduction model. The results show that eduction can lead to the quasi adiabatic decompression of the subducted crust (≈2 GPa) in a timespan of 5 My, large localized extensional strain in the former subduction channel, f…

Atmospheric Science010504 meteorology & atmospheric sciencesContinental collisionSoil ScienceAquatic Science010502 geochemistry & geophysicsOceanography01 natural sciencesMantle (geology)FlatteningGeochemistry and PetrologyOceanic crustEarth and Planetary Sciences (miscellaneous)Adiabatic process0105 earth and related environmental sciencesEarth-Surface ProcessesWater Science and TechnologyEcologySubductionPaleontologyForestryCrustGeophysicsGeophysicsSpace and Planetary ScienceSlabGeologyJournal of Geophysical Research: Solid Earth
researchProduct

Optical Shielding of Destructive Chemical Reactions between Ultracold Ground-State NaRb Molecules

2020

Polar quantum gases represent promising platforms for studying many-body physics and strongly correlated systems with possible applications e.g. in quantum simulation or quantum computation. Due to their large permanent electric dipole moment polar molecules in electric field exhibit strong long-range anisotropic dipole-dipole interactions (DDIs). The creation and trapping of ultracold dipolar diatomic molecules of various species are feasible in many experimental groups nowadays. However long time trapping is still a challenge even in the case of the so called nonreactive molecules which are supposed to be immune against inelastic collisions in their absolute ground state [1] . Various hyp…

Atomic Physics (physics.atom-ph)Inelastic collisionGeneral Physics and AstronomyFOS: Physical sciencesQuantum simulator01 natural sciences7. Clean energyMolecular physicslaw.inventionPhysics - Atomic Physics[PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]law0103 physical sciencesMoleculeSpontaneous emissionPhysics::Atomic Physics010306 general physicsComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-ATOM-PH]Physics [physics]/Physics [physics]/Atomic Physics [physics.atom-ph]Rotational–vibrational spectroscopyLaserDiatomic moleculeDipoleElectric dipole momentQuantum Gases (cond-mat.quant-gas)Excited stateAtom optics[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physicsCondensed Matter - Quantum GasesGround state
researchProduct