Search results for " combinatorics"
showing 10 items of 296 documents
Generating restricted classes of involutions, Bell and Stirling permutations
2010
AbstractWe present a recursive generating algorithm for unrestricted permutations which is based on both the decomposition of a permutation as a product of transpositions and that as a union of disjoint cycles. It generates permutations at each recursive step and slight modifications of it produce generating algorithms for Bell permutations and involutions. Further refinements yield algorithms for these classes of permutations subject to additional restrictions: a given number of cycles or/and fixed points. We obtain, as particular cases, generating algorithms for permutations counted by the Stirling numbers of the first and second kind, even permutations, fixed-point-free involutions and d…
Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces
2014
Abstract Let X be a non-empty set. We say that an element x ∈ X is a φ-fixed point of T, where φ : X → [ 0 , ∞ ) and T : X → X , if x is a fixed point of T and φ ( x ) = 0 . In this paper, we establish some existence results of φ-fixed points for various classes of operators in the case, where X is endowed with a metric d. The obtained results are used to deduce some fixed point theorems in the case where X is endowed with a partial metric p. MSC:54H25, 47H10.
An integral representation for decomposable measures of measurable functions
1994
We start with a measurem on a measurable space (Ω,A), decomposable with respect to an Archimedeant-conorm ⊥ on a real interval [0,M], which generalizes an additive measure. Using the integral introduced by the second author, a Radon-Nikodym type theorem, needed in what follows, is given.
Symmetric (79, 27, 9)-designs Admitting a Faithful Action of a Frobenius Group of Order 39
1997
AbstractIn this paper we present the classification of symmetric designs with parameters (79, 27, 9) on which a non-abelian group of order 39 acts faithfully. In particular, we show that such a group acts semi-standardly with 7 orbits. Using the method of tactical decompositions, we are able to construct exactly 1320 non-isomorphic designs. The orders of the full automorphism groups of these designs all divide 8 · 3 · 13.
Periodicity and repetitions in parameterized strings
2008
AbstractOne of the most beautiful and useful notions in the Mathematical Theory of Strings is that of a Period, i.e., an initial piece of a given string that can generate that string by repeating itself at regular intervals. Periods have an elegant mathematical structure and a wealth of applications [F. Mignosi and A. Restivo, Periodicity, Algebraic Combinatorics on Words, in: M. Lothaire (Ed.), Cambridge University Press, Cambridge, pp. 237–274, 2002]. At the hearth of their theory, there are two Periodicity Lemmas: one due to Lyndon and Schutzenberger [The equation aM=bNcP in a free group, Michigan Math. J. 9 (1962) 289–298], referred to as the Weak Version, and the other due to Fine and …
Embedding finite linear spaces in projective planes, II
1987
Abstract It is shown that a finite linear space with maximal point degree n + 1 can be embedded in a projective plane of order n, provided that the line sizes are big enough.
Finite linear spaces in which any n-gon is euclidean
1986
Abstract An n-gon of a linear space is a set S of n points no three of which are collinear. By a diagonal point of S we mean a point p off S with the property that at least two lines through p intersect S in two points. The number of diagonal points is called the type of S. For example, a 4-gon has at most three diagonal points. We call an n-gon euclidean if (roughly speaking) it contains the maximal possible number of 4-gons of type 3. In this paper, we characterize all finite linear spaces in which, for a fixed number n ⩾ 5, any n-gon is euclidean. It turns out that these structures are essentially projective spaces or punctured projective spaces.
Every triangle-free induced subgraph of the triangular lattice is(5m,2m)-choosable
2014
A graph G is (a,b)-choosable if for any color list of size a associated with each vertex, one can choose a subset of b colors such that adjacent vertices are colored with disjoint color sets. This paper proves that for any integer m>=1, every finite triangle-free induced subgraph of the triangular lattice is (5m,2m)-choosable.
A Motzkin filter in the Tamari lattice
2015
The Tamari lattice of order n can be defined on the set T n of binary trees endowed with the partial order relation induced by the well-known rotation transformation. In this paper, we restrict our attention to the subset M n of Motzkin trees. This set appears as a filter of the Tamari lattice. We prove that its diameter is 2 n - 5 and that its radius is n - 2 . Enumeration results are given for join and meet irreducible elements, minimal elements and coverings. The set M n endowed with an order relation based on a restricted rotation is then isomorphic to a ranked join-semilattice recently defined in Baril and Pallo (2014). As a consequence, we deduce an upper bound for the rotation distan…
Dyck paths with a first return decomposition constrained by height
2018
International audience; We study the enumeration of Dyck paths having a first return decomposition with special properties based on a height constraint. We exhibit new restricted sets of Dyck paths counted by the Motzkin numbers, and we give a constructive bijection between these objects and Motzkin paths. As a byproduct, we provide a generating function for the number of Motzkin paths of height k with a flat (resp. with no flats) at the maximal height. (C) 2018 Elsevier B.V. All rights reserved.KeywordsKeyWords Plus:STATISTICS; STRINGS