Search results for " combinatorics"
showing 10 items of 296 documents
Exhaustive generation for permutations avoiding (colored) regular sets of patterns
2019
Abstract Despite the fact that the field of pattern avoiding permutations has been skyrocketing over the last two decades, there are very few exhaustive generating algorithms for such classes of permutations. In this paper we introduce the notions of regular and colored regular set of forbidden patterns, which are particular cases of right-justified sets of forbidden patterns. We show the (colored) regularity of several sets of forbidden patterns (some of them involving variable length patterns) and we derive a general framework for the efficient generation of permutations avoiding them. The obtained generating algorithms are based on succession functions, a notion which is a byproduct of t…
Combinatorial Gray codes for classes of pattern avoiding permutations
2007
The past decade has seen a flurry of research into pattern avoiding permutations but little of it is concerned with their exhaustive generation. Many applications call for exhaustive generation of permutations subject to various constraints or imposing a particular generating order. In this paper we present generating algorithms and combinatorial Gray codes for several families of pattern avoiding permutations. Among the families under consideration are those counted by Catalan, Schr\"oder, Pell, even index Fibonacci numbers and the central binomial coefficients. Consequently, this provides Gray codes for $\s_n(\tau)$ for all $\tau\in \s_3$ and the obtained Gray codes have distances 4 and 5.
Combinatorics of generalized Bethe equations
2012
A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over \({\mathbb{Z}^M}\), and on the other hand, they count integer points in certain M-dimensional polytopes.
On the size of the set of unbounded multilinear operators between Banach spaces
2020
Among other results we investigate $\left( \alpha,\beta\right) $-lineability of the set of non-continuous $m$-linear operators defined between normed spaces as a subset of the space of all $m$-linear operators. We also give a partial answer to an open problem on the lineability of the set of non absolutely summing operators.
Free Minor Closed Classes and the Kuratowski theorem
2009
Free-minor closed classes [2] and free-planar graphs [3] are considered. Versions of Kuratowski-like theorem for free-planar graphs and Kuratowski theorem for planar graphs are considered.
The Integrated Nested Laplace Approximation for fitting Dirichlet regression models
2022
This paper introduces a Laplace approximation to Bayesian inference in Dirichlet regression models, which can be used to analyze a set of variables on a simplex exhibiting skewness and heteroscedasticity, without having to transform the data.These data, which mainly consist of proportions or percentages of disjoint categories, are widely known as compositional data and are common in areas such as ecology, geology, and psychology. We provide both the theoretical foundations and a description of how Laplace approximation can be implemented in the case of Dirichlet regression.The paper also introduces the package dirinla in the R-language that extends the RINLA package, which can not deal dire…
Posets That Locally Resemble Distributive Lattices
2000
Abstract Let P be a graded poset with 0 and 1 and rank at least 3. Assume that every rank 3 interval is a distributive lattice and that, for every interval of rank at least 4, the interval minus its endpoints is connected. It is shown that P is a distributive lattice, thus resolving an issue raised by Stanley. Similar theorems are proven for semimodular, modular, and complemented modular lattices. As a corollary, a theorem of Stanley for Boolean lattices is obtained, as well as a theorem of Grabiner (conjectured by Stanley) for products of chains. Applications to incidence geometry and connections with the theory of buildings are discussed.
Avoiding patterns in irreducible permutations
2016
We explore the classical pattern avoidance question in the case of irreducible permutations, <i>i.e.</i>, those in which there is no index $i$ such that $\sigma (i+1) - \sigma (i)=1$. The problem is addressed completely in the case of avoiding one or two patterns of length three, and several well known sequences are encountered in the process, such as Catalan, Motzkin, Fibonacci, Tribonacci, Padovan and Binary numbers. Also, we present constructive bijections between the set of Motzkin paths of length $n-1$ and the sets of irreducible permutations of length $n$ (respectively fixed point free irreducible involutions of length $2n$) avoiding a pattern $\alpha$ for $\alpha \in \{13…
The radius of starlikeness of the certain classes of p-valent functions defined by multiplier transformations
2008
The aim of this paper is to give the radius of starlikeness of the certain classes of -valent functions defined by multiplier transformations. The results are obtained by using techniques of Robertson (1953,1963) which was used by Bernardi (1970), Libera (1971), Livingstone (1966), and Goel (1972).
On the geometric structure of the class of planar quadratic differential systems
2002
In this work we are interested in the global theory of planar quadratic differential systems and more precisely in the geometry of this whole class. We want to clarify some results and methods such as the isocline method or the role of rotation parameters. To this end, we recall how to associate a pencil of isoclines to each quadratic differential equation. We discuss the parameterization of the space of regular pencils of isoclines by the space of its multiple base points and the equivariant action of the affine group on the fibration of the space of regular quadratic differential equations over the space of regular pencils of isoclines. This fibration is principal, with a projective group…