Search results for " combinatorics"

showing 10 items of 296 documents

On the composition and decomposition of positive linear operators (VII)

2021

In the present paper we study the compositions of the piecewise linear interpolation operator S?n and the Beta-type operator B?n, namely An:= S?n ?B?n and Gn := B?n ? S?n. Voronovskaya type theorems for the operators An and Gn are proved, substantially improving some corresponding known results. The rate of convergence for the iterates of the operators Gn and An is considered. Some estimates of the differences between An, Gn, Bn and S?n, respectively, are given. Also, we study the behaviour of the operators An on the subspace of C[0,1] consisting of all polygonal functions with nodes {0, 1/2,..., n-1/n,1}. Finally, we propose to the readers a conjecture concerning the eigenvalues of the ope…

Pure mathematicsApplied MathematicsLinear operatorsDecomposition (computer science)Discrete Mathematics and CombinatoricsComposition (combinatorics)AnalysisMathematicsApplicable Analysis and Discrete Mathematics
researchProduct

Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian

2012

Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.

Pure mathematicsApplied Mathematicsthree-critical-points theoremdifferential inclusion problemType (model theory)Lipschitz continuityDifferential inclusionCritical points of locally Lipschitz continuous functionalcritical points of locally Lipschitz continuous functionalsp-LaplacianDiscrete Mathematics and Combinatoricsp(x)-Laplacian; variable exponent Sobolev space; critical points of locally Lipschitz continuous functionals; differential inclusion problem; three-critical-points theoremp(x)-Laplacianvariable exponent Sobolev spaceAnalysisMathematics
researchProduct

Approximation properties of λ-Kantorovich operators

2018

In the present paper, we study a new type of Bernstein operators depending on the parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda\in[-1,1]$\end{document}λ∈[−1,1]. The Kantorovich modification of these sequences of linear positive operators will be considered. A quantitative Voronovskaja type theorem by means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja type theorem for λ-Kantorovich operators is provided. Some numerical examples which show the relevance of the res…

Pure mathematicsBernstein operatorModulus of smoothnessResearchApplied Mathematicslcsh:Mathematics010102 general mathematicsType (model theory)Rate of convergenceLambdalcsh:QA1-93901 natural sciences010101 applied mathematicsRate of convergenceVoronovskaja theorem41A10Discrete Mathematics and CombinatoricsKantorovich operators0101 mathematics41A2541A36AnalysisMathematicsJournal of Inequalities and Applications
researchProduct

Stability of the Calderón problem in admissible geometries

2014

In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderon problem. peerReviewed

Pure mathematicsCalderón problemControl and Optimizationta111Stability (learning theory)InversestabilityInverse problemType (model theory)Dimension (vector space)Log-log plotModeling and SimulationInverse boundary value problemsDiscrete Mathematics and CombinatoricsPharmacology (medical)UniquenessBoundary value problemAnalysisMathematicsInverse Problems & Imaging
researchProduct

Unique continuation property and Poincar�� inequality for higher order fractional Laplacians with applications in inverse problems

2020

We prove a unique continuation property for the fractional Laplacian $(-\Delta)^s$ when $s \in (-n/2,\infty)\setminus \mathbb{Z}$. In addition, we study Poincar\'e-type inequalities for the operator $(-\Delta)^s$ when $s\geq 0$. We apply the results to show that one can uniquely recover, up to a gauge, electric and magnetic potentials from the Dirichlet-to-Neumann map associated to the higher order fractional magnetic Schr\"odinger equation. We also study the higher order fractional Schr\"odinger equation with singular electric potential. In both cases, we obtain a Runge approximation property for the equation. Furthermore, we prove a uniqueness result for a partial data problem of the $d$-…

Pure mathematicsControl and Optimizationfractional Schrödinger equationApproximation propertyPoincaré inequalityRadon transform.01 natural sciencesinversio-ongelmatSchrödinger equationsymbols.namesakefractional Poincaré inequalityOperator (computer programming)Mathematics - Analysis of PDEsFOS: MathematicsDiscrete Mathematics and CombinatoricsUniquenesskvanttimekaniikka0101 mathematicsepäyhtälötMathematicsosittaisdifferentiaaliyhtälötPlane (geometry)inverse problemsComputer Science::Information Retrieval010102 general mathematicsOrder (ring theory)Gauge (firearms)Mathematics::Spectral Theoryunique continuationFunctional Analysis (math.FA)010101 applied mathematicsMathematics - Functional AnalysisModeling and Simulationsymbolsfractional LaplacianAnalysis35R30 46F12 44A12Analysis of PDEs (math.AP)
researchProduct

Superconductive and insulating inclusions for linear and non-linear conductivity equations

2015

We detect an inclusion with infinite conductivity from boundary measurements represented by the Dirichlet-to-Neumann map for the conductivity equation. We use both the enclosure method and the probe method. We use the enclosure method to prove partial results when the underlying equation is the quasilinear $p$-Laplace equation. Further, we rigorously treat the forward problem for the partial differential equation $\operatorname{div}(\sigma\lvert\nabla u\rvert^{p-2}\nabla u)=0$ where the measurable conductivity $\sigma\colon\Omega\to[0,\infty]$ is zero or infinity in large sets and $1<p<\infty$.

Pure mathematicsControl and Optimizationmedia_common.quotation_subjectMathematics::Analysis of PDEsBoundary (topology)probe methodConductivity01 natural sciencesMathematics - Analysis of PDEs35R30 35J92 (Primary) 35H99 (Secondary)FOS: MathematicsDiscrete Mathematics and CombinatoricsPharmacology (medical)Nabla symbol0101 mathematicsmedia_commonp-harmonic functionsLaplace's equationPhysicsPartial differential equationCalderón problemComputer Science::Information Retrieval010102 general mathematicsta111Zero (complex analysis)Infinity3. Good health010101 applied mathematicsNonlinear systeminclusionModeling and Simulationinverse boundary value problemAnalysisinkluusioAnalysis of PDEs (math.AP)enclosure method
researchProduct

Some Multiplicative Inequalities for Inner Products and of the Carlson Type

2008

We prove a multiplicative inequality for inner products, which enables us to deduce improvements of inequalities of the Carlson type for complex functions and sequences, and also other known inequalities. Validerad; 2008; Bibliografisk uppgift: Paper id:: 890137; 20080826 (ysko)

Pure mathematicsInequalitymedia_common.quotation_subjectApplied Mathematicslcsh:MathematicsMultiplicative functionMathematical AnalysisType (model theory)lcsh:QA1-939AlgebraMatematisk analysDiscrete Mathematics and CombinatoricsAnalysisMathematicsmedia_commonJournal of Inequalities and Applications
researchProduct

A note on k-generalized projections

2007

Abstract In this note, we investigate characterizations for k -generalized projections (i.e., A k  =  A ∗ ) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl. 400 (2005) 313–318] and those for matrices in [J. Benitez, N. Thome, Characterizations and linear combinations of k -generalized projectors, Linear Algebra Appl. 410 (2005) 150–159].

Pure mathematicsNumerical AnalysisAlgebra and Number TheoryNormal matricesHilbert spaceCharacterization (mathematics)Matrius (Matemàtica)Normal matrixAlgebrasymbols.namesakeLinear algebrasymbolsDiscrete Mathematics and CombinatoricsSpectral projectionGeometry and TopologyÀlgebra linealLinear combinationProjectionst-Potent matricesMathematicsLinear Algebra and its Applications
researchProduct

THE STATE OF FRACTIONAL HEREDITARY MATERIALS (FHM)

2014

The widespread interest on the hereditary behavior of biological and bioinspired materials motivates deeper studies on their macroscopic ``minimal" state. The resulting integral equations for the detected relaxation and creep power-laws, of exponent $\beta$, are characterized by fractional operators. Here strains in $SBV_{loc}$ are considered to account for time-like jumps. Consistently, starting from stresses in $L_{loc}^{r}$, $r\in [1,\beta^{-1}], \, \, \beta\in(0,1)$ we reconstruct the corresponding strain by extending a result in [42]. The ``minimal" state is explored by showing that different histories delivering the same response are such that the fractional derivative of their differ…

Pure mathematicsState variableApplied MathematicsZero (complex analysis)State (functional analysis)Integral equationAction (physics)Fractional calculusFractional hereditary materials power-law functionally graded microstructureExponentDiscrete Mathematics and CombinatoricsRelaxation (physics)Settore ICAR/08 - Scienza Delle CostruzioniMathematics
researchProduct

Multiple solutions for nonlinear nonhomogeneous resonant coercive problems

2018

We consider a nonlinear, nonhomogeneous Dirichlet problem driven by the sum of a \begin{document}$p$\end{document} -Laplacian ( \begin{document}$2 ) and a Laplacian. The reaction term is a Caratheodory function \begin{document}$f(z,x)$\end{document} which is resonant with respect to the principal eigenvalue of ( \begin{document}$-\Delta_p,\, W^{1,p}_0(\Omega)$\end{document} ). Using variational methods combined with truncation and comparison techniques and Morse theory (critical groups) we prove the existence of three nontrivial smooth solutions all with sign information and under three different conditions concerning the behavior of \begin{document}$f(z,\cdot)$\end{document} near zero. By …

Pure mathematicsTruncation01 natural sciencesResonanceExtremal constant sign solutionConstant sign and nodal solutionDiscrete Mathematics and Combinatorics0101 mathematicsEigenvalues and eigenvectorsCritical groupDiscrete Mathematics and CombinatoricMorse theoryNonlinear regularityPhysicsDirichlet problemMultiple smooth solutionComputer Science::Information RetrievalApplied Mathematics010102 general mathematicsZero (complex analysis)AnalysiFunction (mathematics)010101 applied mathematicsLaplace operatorAnalysisSign (mathematics)
researchProduct