Search results for " combinatorics"
showing 10 items of 296 documents
Words
2015
Localized potentials in electrical impedance tomography
2008
In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L ∞ -conductivities in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to con- struct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical imp…
The pure descent statistic on permutations
2017
International audience; We introduce a new statistic based on permutation descents which has a distribution given by the Stirling numbers of the first kind, i.e., with the same distribution as for the number of cycles in permutations. We study this statistic on the sets of permutations avoiding one pattern of length three by giving bivariate generating functions. As a consequence, new classes of permutations enumerated by the Motzkin numbers are obtained. Finally, we deduce results about the popularity of the pure descents in all these restricted sets. (C) 2017 Elsevier B.V. All rights reserved.
Ping-pong configurations and circular orders on free groups
2017
We discuss actions of free groups on the circle with "ping-pong" dynamics; these are dynamics determined by a finite amount of combinatorial data, analogous to Schottky domains or Markov partitions. Using this, we show that the free group $F_n$ admits an isolated circular order if and only if n is even, in stark contrast with the case for linear orders. This answers a question from (Mann, Rivas, 2016). Inspired by work of Alvarez, Barrientos, Filimonov, Kleptsyn, Malicet, Menino and Triestino, we also exhibit examples of "exotic" isolated points in the space of all circular orders on $F_2$. Analogous results are obtained for linear orders on the groups $F_n \times \mathbb{Z}$.
THE HOMOLOGY OF DIGRAPHS AS A GENERALIZATION OF HOCHSCHILD HOMOLOGY
2010
J. Przytycki has established a connection between the Hochschild homology of an algebra $A$ and the chromatic graph homology of a polygon graph with coefficients in $A$. In general the chromatic graph homology is not defined in the case where the coefficient ring is a non-commutative algebra. In this paper we define a new homology theory for directed graphs which takes coefficients in an arbitrary $A-A$ bimodule, for $A$ possibly non-commutative, which on polygons agrees with Hochschild homology through a range of dimensions.
Geometric optimal control of elliptic Keplerian orbits
2005
This article deals with the transfer of a satellite between Keplerian orbits. We study the controllability properties of the system and make a preliminary analysis of the time optimal control using the maximum principle. Second order sufficient conditions are also given. Finally, the time optimal trajectory to transfer the system from an initial low orbit with large eccentricity to a terminal geostationary orbit is obtained numerically.
Coding Partitions
2007
Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD), we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ''unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguous component and other (if any) totally ambiguous components. In the case the code is finite, we give an algorithm for computing its canonical…
Equivalence classes of Dyck paths modulo some statistics
2015
International audience; We investigate new equivalence relations on the set $\mathcal{D}_n$ of Dyck paths relatively to the three statistics of double rises, peaks and valleys. Two Dyck paths ar $r$-equivalent (resp. $p$-equivalent and $v$-equivalent) whenever the positions of their double rises (res. peaks and valleys) are the same. Then, we provide generating functions for the numbers of $r$-, $p$- and $v$-equivalence classes of $\mathcal{D}_n$.
On List Coloring with Separation of the Complete Graph and Set System Intersections
2022
We consider the following list coloring with separation problem: Given a graph $G$ and integers $a,b$, find the largest integer $c$ such that for any list assignment $L$ of $G$ with $|L(v)|= a$ for any vertex $v$ and $|L(u)\cap L(v)|\le c$ for any edge $uv$ of $G$, there exists an assignment $\varphi$ of sets of integers to the vertices of $G$ such that $\varphi(u)\subset L(u)$ and $|\varphi(v)|=b$ for any vertex $u$ and $\varphi(u)\cap \varphi(v)=\emptyset$ for any edge $uv$. Such a value of $c$ is called the separation number of $(G,a,b)$. Using a special partition of a set of lists for which we obtain an improved version of Poincar\'e's crible, we determine the separation number of the c…
Asymptotic bit frequency in Fibonacci words
2021
It is known that binary words containing no $k$ consecutive 1s are enumerated by $k$-step Fibonacci numbers. In this note we discuss the expected value of a random bit in a random word of length $n$ having this property.