Search results for " computing"
showing 10 items of 2075 documents
Next-generation sequencing: big data meets high performance computing
2017
The progress of next-generation sequencing has a major impact on medical and genomic research. This high-throughput technology can now produce billions of short DNA or RNA fragments in excess of a few terabytes of data in a single run. This leads to massive datasets used by a wide range of applications including personalized cancer treatment and precision medicine. In addition to the hugely increased throughput, the cost of using high-throughput technologies has been dramatically decreasing. A low sequencing cost of around US$1000 per genome has now rendered large population-scale projects feasible. However, to make effective use of the produced data, the design of big data algorithms and t…
A new parallel pipeline for DNA methylation analysis of long reads datasets
2017
Background DNA methylation is an important mechanism of epigenetic regulation in development and disease. New generation sequencers allow genome-wide measurements of the methylation status by reading short stretches of the DNA sequence (Methyl-seq). Several software tools for methylation analysis have been proposed over recent years. However, the current trend is that the new sequencers and the ones expected for an upcoming future yield sequences of increasing length, making these software tools inefficient and obsolete. Results In this paper, we propose a new software based on a strategy for methylation analysis of Methyl-seq sequencing data that requires much shorter execution times while…
2019
As rats learn to search for multiple sources of food or water in a complex environment, they generate increasingly efficient trajectories between reward sites. Such spatial navigation capacity involves the replay of hippocampal place-cells during awake states, generating small sequences of spatially related place-cell activity that we call "snippets". These snippets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such replay events, as the animal is learning a traveling salesperson task (TSP) across multiple trials. We hypothesize that snippet replay generates synthetic data that can substantially expand and restructure the experience available and make learni…
SpCLUST: Towards a fast and reliable clustering for potentially divergent biological sequences
2019
International audience; This paper presents SpCLUST, a new C++ package that takes a list of sequences as input, aligns them with MUSCLE, computes their similarity matrix in parallel and then performs the clustering. SpCLUST extends a previously released software by integrating additional scoring matrices which enables it to cover the clustering of amino-acid sequences. The similarity matrix is now computed in parallel according to the master/slave distributed architecture, using MPI. Performance analysis, realized on two real datasets of 100 nucleotide sequences and 1049 amino-acids ones, show that the resulting library substantially outperforms the original Python package. The proposed pac…
Parallel Pairwise Epistasis Detection on Heterogeneous Computing Architectures
2016
This is a post-peer-review, pre-copyedit version of an article published in IEEE Transactions on Parallel and Distributed Systems. The final authenticated version is available online at: http://dx.doi.org/10.1109/TPDS.2015.2460247. [Abstract] Development of new methods to detect pairwise epistasis, such as SNP-SNP interactions, in Genome-Wide Association Studies is an important task in bioinformatics as they can help to explain genetic influences on diseases. As these studies are time consuming operations, some tools exploit the characteristics of different hardware accelerators (such as GPUs and Xeon Phi coprocessors) to reduce the runtime. Nevertheless, all these approaches are not able t…
On the Use of Binary Trees for DNA Hydroxymethylation Analysis
2017
DNA methylation (mC) and hydroxymethylation (hmC) can have a significant effect on normal human development, health and disease status. Hydroxymethylation studies require specific treatment of DNA, as well as software tools for their analysis. In this paper, we propose a parallel software tool for analyzing the DNA hydroxymethylation data obtained by TAB-seq. The software is based on the use of binary trees for searching the different occurrences of methylation and hydroxymethylation in DNA samples. The binary trees allow to efficiently store and access the information about the methylation of each methylated/hydroxymethylated cytosines in the samples. Evaluation results shows that the perf…
Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms
2018
Abstract Motivation Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in…
S-Aligner: Ultrascalable Read Mapping on Sunway Taihu Light
2017
The availability and amount of sequenced genomes have been rapidly growing in recent years because of the adoption of next-generation sequencing (NGS) technologies that enable high-throughput short-read generation at highly competitive cost. Since this trend is expected to continue in the foreseeable future, the design and implementation of efficient and scalable NGS bioinformatics algorithms are important to research and industrial applications. In this paper, we introduce S-Aligner–a highly scalable read mapper designed for the Sunway Taihu Light supercomputer and its fourth-generationShenWei many-core architecture (SW26010). S-Aligner employs a combination of optimization techniques to o…
Compendium of TCDD-mediated transcriptomic response datasets in mammalian model systems.
2017
Background 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent congener of the dioxin class of environmental contaminants. Exposure to TCDD causes a wide range of toxic outcomes, ranging from chloracne to acute lethality. The severity of toxicity is highly dependent on the aryl hydrocarbon receptor (AHR). Binding of TCDD to the AHR leads to changes in transcription of numerous genes. Studies evaluating the transcriptional changes brought on by TCDD may provide valuable insight into the role of the AHR in human health and disease. We therefore compiled a collection of transcriptomic datasets that can be used to aid the scientific community in better understanding the transcriptiona…
Global emergence of the widespread Pseudomonas aeruginosa ST235 clone
2018
Abstract Objectives Despite the non-clonal epidemic population structure of Pseudomonas aeruginosa , several multi-locus sequence types are distributed worldwide and are frequently associated with epidemics where multidrug resistance confounds treatment. ST235 is the most prevalent of these widespread clones. In this study we aimed to understand the origin of ST235 and the molecular basis for its success. Methods The genomes of 79 P. aeruginosa ST235 isolates collected worldwide over a 27-year period were examined. A phylogenetic network was built, using a Bayesian approach to find the Most Recent Common Ancestor, and we identified antibiotic resistance determinants and ST235-specific genes…