Search results for " computing"
showing 10 items of 2075 documents
A clustering package for nucleotide sequences using Laplacian Eigenmaps and Gaussian Mixture Model.
2018
International audience; In this article, a new Python package for nucleotide sequences clustering is proposed. This package, freely available on-line, implements a Laplacian eigenmap embedding and a Gaussian Mixture Model for DNA clustering. It takes nucleotide sequences as input, and produces the optimal number of clusters along with a relevant visualization. Despite the fact that we did not optimise the computational speed, our method still performs reasonably well in practice. Our focus was mainly on data analytics and accuracy and as a result, our approach outperforms the state of the art, even in the case of divergent sequences. Furthermore, an a priori knowledge on the number of clust…
2016
The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 alig…
GSaaS: A Service to Cloudify and Schedule GPUs
2018
Cloud technology is an attractive infrastructure solution that provides customers with an almost unlimited on-demand computational capacity using a pay-per-use approach, and allows data centers to increase their energy and economic savings by adopting a virtualized resource sharing model. However, resources such as graphics processing units (GPUs), have not been fully adapted to this model. Although, general-purpose computing on graphics processing units (GPGPU) is becoming more and more popular, cloud providers lack of flexibility to manage accelerators, because of the extended use of peripheral component interconnect (PCI) passthrough techniques to attach GPUs to virtual machines (VMs). F…
parSRA: A framework for the parallel execution of short read aligners on compute clusters
2018
The growth of next generation sequencing datasets poses as a challenge to the alignment of reads to reference genomes in terms of both accuracy and speed. In this work we present parSRA, a parallel framework to accelerate the execution of existing short read aligners on distributed-memory systems. parSRA can be used to parallelize a variety of short read alignment tools installed in the system without any modification to their source code. We show that our framework provides good scalability on a compute cluster for accelerating the popular BWA-MEM and Bowtie2 aligners. On average, it is able to accelerate sequence alignments on 16 64-core nodes (in total, 1024 cores) with speedup of 10.48 …
CUDA-enabled hierarchical ward clustering of protein structures based on the nearest neighbour chain algorithm
2015
Clustering of molecular systems according to their three-dimensional structure is an important step in many bioinformatics workflows. In applications such as docking or structure prediction, many algorithms initially generate large numbers of candidate poses (or decoys), which are then clustered to allow for subsequent computationally expensive evaluations of reasonable representatives. Since the number of such candidates can easily range from thousands to millions, performing the clustering on standard central processing units (CPUs) is highly time consuming. In this paper, we analyse and evaluate different approaches to parallelize the nearest neighbour chain algorithm to perform hierarc…
ParDRe: faster parallel duplicated reads removal tool for sequencing studies
2016
This is a pre-copyedited, author-produced version of an article accepted for publication in Bioinformatics following peer review. The version of record [insert complete citation information here] is available online at: https://doi.org/10.1093/bioinformatics/btw038 [Abstract] Summary: Current next generation sequencing technologies often generate duplicated or near-duplicated reads that (depending on the application scenario) do not provide any interesting biological information but can increase memory requirements and computational time of downstream analysis. In this work we present ParDRe , a de novo parallel tool to remove duplicated and near-duplicated reads through the clustering of S…
panISa: ab initio detection of insertion sequences in bacterial genomes from short read sequence data.
2018
Abstract Motivation The advent of next-generation sequencing has boosted the analysis of bacterial genome evolution. Insertion sequence (IS) elements play a key role in prokaryotic genome organization and evolution, but their repetitions in genomes complicate their detection from short-read data. Results PanISa is a software pipeline that identifies IS insertions ab initio in bacterial genomes from short-read data. It is a highly sensitive and precise tool based on the detection of read-mapping patterns at the insertion site. PanISa performs better than existing IS detection systems as it is based on a database-free approach. We applied it to a high-risk clone lineage of the pathogenic spec…
MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems
2016
This is a pre-copyedited, author-produced version of an article accepted for publication in Bioinformatics following peer review. The version of recordJorge González-Domínguez, Yongchao Liu, Juan Touriño, Bertil Schmidt; MSAProbs-MPI: parallel multiple sequence aligner for distributed-memory systems, Bioinformatics, Volume 32, Issue 24, 15 December 2016, Pages 3826–3828, https://doi.org/10.1093/bioinformatics/btw558is available online at: https://doi.org/10.1093/bioinformatics/btw558 [Abstracts] MSAProbs is a state-of-the-art protein multiple sequence alignment tool based on hidden Markov models. It can achieve high alignment accuracy at the expense of relatively long runtimes for large-sca…
Simulation-based estimation of branching models for LTR retrotransposons
2017
Abstract Motivation LTR retrotransposons are mobile elements that are able, like retroviruses, to copy and move inside eukaryotic genomes. In the present work, we propose a branching model for studying the propagation of LTR retrotransposons in these genomes. This model allows us to take into account both the positions and the degradation level of LTR retrotransposons copies. In our model, the duplication rate is also allowed to vary with the degradation level. Results Various functions have been implemented in order to simulate their spread and visualization tools are proposed. Based on these simulation tools, we have developed a first method to evaluate the parameters of this propagation …
An effective extension of the applicability of alignment-free biological sequence comparison algorithms with Hadoop
2016
Alignment-free methods are one of the mainstays of biological sequence comparison, i.e., the assessment of how similar two biological sequences are to each other, a fundamental and routine task in computational biology and bioinformatics. They have gained popularity since, even on standard desktop machines, they are faster than methods based on alignments. However, with the advent of Next-Generation Sequencing Technologies, datasets whose size, i.e., number of sequences and their total length, is a challenge to the execution of alignment-free methods on those standard machines are quite common. Here, we propose the first paradigm for the computation of k-mer-based alignment-free methods for…