Search results for " computing"

showing 10 items of 2075 documents

Parallel and Space-Efficient Construction of Burrows-Wheeler Transform and Suffix Array for Big Genome Data

2016

Next-generation sequencing technologies have led to the sequencing of more and more genomes, propelling related research into the era of big data. In this paper, we present ParaBWT, a parallelized Burrows-Wheeler transform (BWT) and suffix array construction algorithm for big genome data. In ParaBWT, we have investigated a progressive construction approach to constructing the BWT of single genome sequences in linear space complexity, but with a small constant factor. This approach has been further parallelized using multi-threading based on a master-slave coprocessing model. After gaining the BWT, the suffix array is constructed in a memory-efficient manner. The performance of ParaBWT has b…

0301 basic medicineTheoretical computer scienceBurrows–Wheeler transformComputer scienceGenomicsData_CODINGANDINFORMATIONTHEORYParallel computingGenomelaw.invention03 medical and health scienceslawGeneticsHumansEnsemblMulti-core processorApplied MathematicsLinear spaceSuffix arrayChromosome MappingHigh-Throughput Nucleotide SequencingGenomicsSequence Analysis DNA030104 developmental biologyAlgorithmsBiotechnologyReference genomeIEEE/ACM Transactions on Computational Biology and Bioinformatics
researchProduct

A detailed experimental study of a DNA computer with two endonucleases

2017

Abstract Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro’s group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity – increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effe…

0301 basic medicineTheoretical computer scienceDNA LigasesComputer scienceCarry (arithmetic)Oligonucleotides0102 computer and information sciencesBioinformatics01 natural sciencesGeneral Biochemistry Genetics and Molecular Biologylaw.inventionAutomationComputers Molecular03 medical and health sciencesDNA computinglawA-DNADeoxyribonucleases Type II Site-Specificchemistry.chemical_classificationDNA ligaseFinite-state machineBase Sequencebiomolecular computers; DNA computing; finite automataProcess (computing)DNAModels TheoreticalEndonucleasesAutomaton030104 developmental biologychemistry010201 computation theory & mathematicsWord (computer architecture)Zeitschrift für Naturforschung C
researchProduct

Biomolecular computers with multiple restriction enzymes

2017

Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…

0301 basic medicineTheoretical computer scienceDNA computerlcsh:QH426-4700102 computer and information sciencesBiology01 natural scienceslaw.inventionrestriction enzymesGenomics and Bioinformatics03 medical and health sciencessymbols.namesakeSoftwareDNA computinglawGeneticsNondeterministic finite automatonMolecular BiologyQuantum computerFinite-state machinebusiness.industryConstruct (python library)bioinformaticsDNARestriction enzymelcsh:Genetics030104 developmental biology010201 computation theory & mathematicssymbolsbusinessVon Neumann architectureGenetics and Molecular Biology
researchProduct

Accelerating metagenomic read classification on CUDA-enabled GPUs.

2016

Metagenomic sequencing studies are becoming increasingly popular with prominent examples including the sequencing of human microbiomes and diverse environments. A fundamental computational problem in this context is read classification; i.e. the assignment of each read to a taxonomic label. Due to the large number of reads produced by modern high-throughput sequencing technologies and the rapidly increasing number of available reference genomes software tools for fast and accurate metagenomic read classification are urgently needed. We present cuCLARK, a read-level classifier for CUDA-enabled GPUs, based on the fast and accurate classification of metagenomic sequences using reduced k-mers (…

0301 basic medicineTheoretical computer scienceWorkstationGPUsComputer scienceContext (language use)CUDAParallel computingBiochemistryGenomelaw.invention03 medical and health sciencesCUDAUser-Computer Interface0302 clinical medicineStructural BiologylawTaxonomic assignmentHumansMicrobiomeMolecular BiologyInternetXeonApplied MathematicsHigh-Throughput Nucleotide SequencingSequence Analysis DNAExact k-mer matchingComputer Science Applications030104 developmental biologyTitan (supercomputer)Metagenomics030220 oncology & carcinogenesisMetagenomicsDNA microarraySoftwareBMC bioinformatics
researchProduct

A webGIS-based system for real time shelf life prediction

2016

Technologies to acquire and monitor changes in the product shelf life were described.Four different SL predictive models were considered.A simulated transport using a prototype of Smart Logistic Unit was analysed.Real time shelf life prediction system was implemented in a webGIS platform. Shelf-life (SL) prediction and Least Shelf-life First Out (LSFO) stock strategy are important factors in perishable food supply chain in order to reduce quality and economic losses.In particular, distribution represents one of the main critical phases in logistic chain management and only the introduction of monitoring procedure can allow a reduction in food losses. Literature shows several mathematical mo…

0301 basic medicineTruckEngineeringWeb GISMathematical modelOperations researchbusiness.industrySupply chain030106 microbiologyReal-time computingForestry04 agricultural and veterinary sciencesHorticultureCommunications systemShelf life040401 food scienceAutomationComputer Science Applications03 medical and health sciences0404 agricultural biotechnologyAssisted GPSSettore ING-IND/17 - Impianti Industriali MeccaniciGlobal Positioning SystembusinessAgronomy and Crop Science
researchProduct

mD3DOCKxb: An Ultra-Scalable CPU-MIC Coordinated Virtual Screening Framework

2017

Molecular docking is an important method in computational drug discovery. In large-scale virtual screening, millions of small drug-like molecules (chemical compounds) are compared against a designated target protein (receptor). Depending on the utilized docking algorithm for screening, this can take several weeks on conventional HPC systems. However, for certain applications including large-scale screening tasks for newly emerging infectious diseases such high runtimes can be highly prohibitive. In this paper, we investigate how the massively parallel neo-heterogeneous architecture of Tianhe-2 Supercomputer consisting of thousands of nodes comprising CPUs and MIC coprocessors that can effic…

0301 basic medicineVirtual screeningMulti-core processorCoprocessorComputer sciencebusiness.industryParallel computingSupercomputer03 medical and health sciences030104 developmental biologyEmbedded systemScalabilityTianhe-2Algorithm designbusinessMassively parallel2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)
researchProduct

Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters

2016

Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data par…

0301 basic medicineXeon Phi clustersComputer scienceData parallelismParallel algorithm02 engineering and technologyDynamic programmingBiochemistryPairwise sequence alignmentComputational science03 medical and health sciencesStructural BiologyComputer cluster0202 electrical engineering electronic engineering information engineeringAmino Acid SequenceDatabases ProteinMolecular Biology020203 distributed computingResearchApplied MathematicsComputational BiologyProteinsSmith-WatermanComputer Science Applications030104 developmental biologyMultiple sequence alignmentDatabases Nucleic AcidSequence AlignmentAlgorithmsSoftwareXeon PhiBMC Bioinformatics
researchProduct

SWhybrid: A Hybrid-Parallel Framework for Large-Scale Protein Sequence Database Search

2017

Computer architectures continue to develop rapidly towards massively parallel and heterogeneous systems. Thus, easily extensible yet highly efficient parallelization approaches for a variety of platforms are urgently needed. In this paper, we present SWhybrid, a hybrid computing framework for large-scale biological sequence database search on heterogeneous computing environments with multi-core or many-core processing units (PUs) based on the Smith- Waterman (SW) algorithm. To incorporate a diverse set of PUs such as combinations of CPUs, GPUs and Xeon Phis, we abstract them as SIMD vector execution units with different number of lanes. We propose a machine model, associated with a unified …

0301 basic medicineXeonSequence databasebusiness.industryComputer scienceInterface (computing)Symmetric multiprocessor systemParallel computingSet (abstract data type)03 medical and health sciences030104 developmental biologySoftwareComputer architectureSIMDbusinessMassively parallel2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)
researchProduct

Decentralised trust-management inspired by ant pheromones

2017

Computational trust is increasingly utilised to select interaction partners in open technical systems consisting of heterogeneous, autonomous agents. Current approaches rely on centralised elements for managing trust ratings (i.e. control and provide access to aggregated ratings). Consider a grid computing application as illustrating example: agents share their computing resources and cooperate in terms of processing computing jobs. These agents are free to join and leave, and they decide on their own with whom to interact. The impact of malicious or uncooperative agents can be countered by only cooperating with agents that have shown to be benevolent: trust relationships are established. T…

0301 basic medicinebusiness.industryComputer scienceComputer Networks and CommunicationsMulti-agent systemAutonomous agent02 engineering and technologyOrganic computingGridcomputer.software_genreComputer securityManagement Information SystemsPublic-key cryptography03 medical and health sciences030104 developmental biologyGrid computingArtificial Intelligence0202 electrical engineering electronic engineering information engineeringTrust management (information system)020201 artificial intelligence & image processingComputational trustbusinesscomputerSoftwareInternational Journal of Mobile Network Design and Innovation
researchProduct

GPU-Based Optimisation of 3D Sensor Placement Considering Redundancy, Range and Field of View

2020

This paper presents a novel and efficient solution for the 3D sensor placement problem based on GPU programming and massive parallelisation. Compared to prior art using gradient-search and mixed-integer based approaches, the method presented in this paper returns optimal or good results in a fraction of the time compared to previous approaches. The presented method allows for redundancy, i.e. requiring selected sub-volumes to be covered by at least n sensors. The presented results are for 3D sensors which have a visible volume represented by cones, but the method can easily be extended to work with sensors having other range and field of view shapes, such as 2D cameras and lidars.

0303 health sciences030306 microbiologyComputer scienceVolume (computing)020207 software engineeringField of view02 engineering and technology3d sensor03 medical and health sciencesRange (mathematics)CUDAComputer engineering0202 electrical engineering electronic engineering information engineeringRedundancy (engineering)Fraction (mathematics)General-purpose computing on graphics processing units2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA)
researchProduct