Search results for " computing"

showing 10 items of 2075 documents

A Flexible 4G/5G Control Platform for Fingerprint-based Indoor Localization

2019

In this paper we propose a centralized SDN platform devised to control indoor femto-cells for supporting multiple network-wide optimizations and applications. In particular, we focus on an example localization application in order to enlighten the main functionalities and potentialities of the approach. First, we demonstrate that the platform can be exploited for reconfiguring some operational procedures, based on standard signalling mechanisms, at the programmable femto-cells; these procedures enable customized logics for collecting measurements reports from mobile terminals. Second, assuming that high-density devices such as smart objects are disseminated in the controlled indoor space, w…

Artificial neural networkSmart objectsbusiness.industryComputer scienceReal-time computing020206 networking & telecommunications02 engineering and technologyBase stationSoftware0202 electrical engineering electronic engineering information engineeringCellular network020201 artificial intelligence & image processingbusinessClassifier (UML)5GIEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)
researchProduct

Joint Dynamic Resource Allocation for Coupled Heterogeneous Wireless Networks Based on Hopfield Neural Networks

2008

This paper proposes an algorithm to solve the problem of Joint Dynamic Resource Allocation in heterogeneous wireless networks. The algorithm is based on Hopfield Neural Networks to achieve fast and suboptimal solutions. The generic formulation is particularized and evaluated in an HSDPA and 802.11e WLAN coupled networks. Some illustrative simulations results are presented to evaluate the performance of the new algorithm as compared with other strategies. The obtained results confirm the validity of the proposal.

Artificial neural networkWireless networkComputer scienceDistributed computingComputer Science::Networking and Internet ArchitectureLocal area networkHeterogeneous wireless networkResource allocationThroughputResource managementIEEE 802.11e-2005VTC Spring 2008 - IEEE Vehicular Technology Conference
researchProduct

Estimation of Granger causality through Artificial Neural Networks: applications to physiological systems and chaotic electronic oscillators

2021

One of the most challenging problems in the study of complex dynamical systems is to find the statistical interdependencies among the system components. Granger causality (GC) represents one of the most employed approaches, based on modeling the system dynamics with a linear vector autoregressive (VAR) model and on evaluating the information flow between two processes in terms of prediction error variances. In its most advanced setting, GC analysis is performed through a state-space (SS) representation of the VAR model that allows to compute both conditional and unconditional forms of GC by solving only one regression problem. While this problem is typically solved through Ordinary Least Sq…

Artificial neural networks; Chaotic oscillators; Granger causality; Multivariate time series analysis; Network physiology; Penalized regression techniques; Remote synchronization; State-space models; Stochastic gradient descent L1; Vector autoregressive modelGeneral Computer ScienceDynamical systems theoryComputer science02 engineering and technologyChaotic oscillatorsPenalized regression techniquesNetwork topologySettore ING-INF/01 - ElettronicaMultivariate time series analysisVector autoregression03 medical and health sciences0302 clinical medicineScientific Computing and Simulation0202 electrical engineering electronic engineering information engineeringRepresentation (mathematics)Optimization Theory and ComputationNetwork physiologyState-space modelsArtificial neural networkArtificial neural networksData ScienceTheory and Formal MethodsQA75.5-76.95Stochastic gradient descent L1Granger causality State-space models Vector autoregressive model Artificial neural networks Stochastic gradient descent L1 Multivariate time series analysis Network physiology Remote synchronization Chaotic oscillators Penalized regression techniquesRemote synchronizationStochastic gradient descentAutoregressive modelAlgorithms and Analysis of AlgorithmsVector autoregressive modelElectronic computers. Computer scienceSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaGranger causality020201 artificial intelligence & image processingGradient descentAlgorithm030217 neurology & neurosurgeryPeerJ Computer Science
researchProduct

X-ray emission from stellar jets by collision against high-density molecular clouds: an application to HH 248

2015

We investigate the plausibility of detecting X-ray emission from a stellar jet that impacts against a dense molecular cloud. This scenario may be usual for classical T Tauri stars with jets in dense star-forming complexes. We first model the impact of a jet against a dense cloud by 2D axisymmetric hydrodynamic simulations, exploring different configurations of the ambient environment. Then, we compare our results with XMM-Newton observations of the Herbig-Haro object HH 248, where extended X-ray emission aligned with the optical knots is detected at the edge of the nearby IC 434 cloud. Our simulations show that a jet can produce plasma with temperatures up to 10 MK, consistent with producti…

AstrofísicaHERBIGHARO OBJECTSJETS AND OUTFLOWS [ISM]Astrophysics::High Energy Astrophysical PhenomenaRotational symmetryFOS: Physical sciencesCloud computingAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsISM [X-RAYS]Space (mathematics)LuminosityHYDRODYNAMICS//purl.org/becyt/ford/1 [https]INDIVIDUAL OBJECTS (HH 248) [ISM]hydrodynamics Herbig-Haro objects ISM: individual objects: HH 248 ISM: jets and outflows X-rays: ISMAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)PhysicsJet (fluid)business.industryMolecular cloudAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]PlasmaAstronomíaT Tauri starAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceHerbig–Haro objectsbusiness
researchProduct

2017

Abstract. In situ observations of cloud properties in complex alpine terrain where research aircraft cannot sample are commonly conducted at mountain-top research stations and limited to single-point measurements. The HoloGondel platform overcomes this limitation by using a cable car to obtain vertical profiles of the microphysical and meteorological cloud parameters. The main component of the HoloGondel platform is the HOLographic Imager for Microscopic Objects (HOLIMO 3G), which uses digital in-line holography to image cloud particles. Based on two-dimensional images the microphysical cloud parameters for the size range from small cloud particles to large precipitation particles are obtai…

Atmospheric Science010504 meteorology & atmospheric sciencesIce crystalsMeteorologybusiness.industryCloud topHolographyPhase (waves)Cloud computingTerrain01 natural scienceslaw.invention010309 opticslaw0103 physical sciencesRange (statistics)PrecipitationbusinessGeology0105 earth and related environmental sciencesRemote sensingAtmospheric Measurement Techniques
researchProduct

The Role of Wind Speed and Wind Shear for Banner Cloud Formation

2019

Abstract Banner clouds are clouds that appear to be attached to the leeward face of a steep mountain. This paper investigates the role of wind speed and wind shear for the formation of banner clouds. Large-eddy simulations are performed to simulate the flow of dry air past an idealized pyramid-shaped mountain. The potential for cloud formation is diagnosed through the Lagrangian vertical parcel displacement, which in the case of a banner cloud shows a plume of large values in the lee of the mountain. In addition, vortical structures are visualized through streamlines and their curvature. A series of sensitivity experiments indicates that both the flow and the banner cloud occurrence are lar…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologybusiness.industryCloud computing010501 environmental sciences01 natural sciencesVertical motionWind speedPhysics::Fluid DynamicsAtmosphereBoundary layerWind shearBannerbusinessPhysics::Atmospheric and Oceanic PhysicsGeology0105 earth and related environmental sciencesJournal of the Atmospheric Sciences
researchProduct

Effective cloud optical depth and enhancement effects for broken liquid water clouds in Valencia (Spain)

2017

Partly cloudy skies with liquid water clouds have been analysed, founding that it is essential to distinguish data if the Sun is obstructed or not by clouds. Both cases can be separated considering simultaneously the Cloud Modification Factor (CMF) and the clearness index (kt). For partly cloudy skies and the Sun obstructed the effective cloud optical depth (τ) has been obtained by the minimization method for overcast skies. This method was previously developed by the authors but, in this case, taking into account partial cloud cover. This study has been conducted for the years 2011–2015 with the multiple scattering model SBDART and irradiance measurements for the UV Erythemal Radiation (UV…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologybusiness.industryCloud coverIrradianceSolar zenith angleCloud computingRadiation010502 geochemistry & geophysics01 natural sciencesCloud optical depthOvercastRange (statistics)Environmental sciencebusinessAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesAtmospheric Research
researchProduct

Mixed-Phase Clouds: Progress and Challenges

2017

Mixed-phase clouds represent a three-phase colloidal system consisting of water vapor, ice particles, and coexisting supercooled liquid droplets. Mixed-phase clouds are ubiquitous in the troposphere, occurring at all latitudes from the polar regions to the tropics. Because of their widespread nature, mixed-phase processes play critical roles in the life cycle of clouds, precipitation formation, cloud electrification, and the radiative energy balance on both regional and global scales. Yet, in spite of many decades of observations and theoretical studies, our knowledge and understanding of mixed-phase cloud processes remains incomplete. Mixed-phase clouds are notoriously difficult to represe…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologybusiness.industryEarth scienceCloud physicsCloud computing010502 geochemistry & geophysicsOceanographyNumerical weather prediction01 natural sciencesTroposphere13. Climate actionInternational Satellite Cloud Climatology Projectddc:550Clouds; Aircraft observations; Lidars/Lidar observations; Microwave observations; Radars/Radar observations; Climate modelsEnvironmental scienceClimate modelPrecipitationbusinessWater vaporAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciences
researchProduct

The challenge of simulating the sensitivity of the Amazonian clouds microstructure to cloud condensation nuclei number concentrations

2019

The realistic representation of cloud-aerosol interactions is of primary importance for accurate climate model projections. The investigation of these interactions in strongly contrasting clean and polluted atmospheric conditions in the Amazon area has been one of the motivations for several field observations, including the airborne Aerosol, Cloud, Precipitation, and Radiation Interactions and DynamIcs of CONvective cloud systems – Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement) (ACRIDICON-CHUVA) campaign based in Manaus, Brazil in September 2014. In this work we combine in situ …

Atmospheric Science010504 meteorology & atmospheric sciencesaerosolNuclear TheoryCloud computingAtmospheric sciences01 natural scienceslcsh:ChemistryCloud base0103 physical sciencesddc:550Cloud condensation nucleicloudPrecipitationmicrophysicsWolkenphysikNuclear Experiment010303 astronomy & astrophysicsPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesEffective radiusCondensed Matter::Quantum Gasescloud condenstion nucleiLidarbusiness.industryCondensed Matter::Otherlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceClimate modelbusinessGlobal Precipitation Measurementlcsh:Physics
researchProduct

The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification

2019

A consortium of polar scientists combined observational forces in a field campaign of unprecedented complexity to uncover the secrets of clouds and their role in Arctic amplification. Two research aircraft, an icebreaker research vessel, an ice-floe camp including an instrumented tethered balloon, and a permanent ground-based measurement station were employed in this endeavour. Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, surfa…

Atmospheric Science010504 meteorology & atmospheric sciencesbusiness.industryCloud computingPascal (programming language)010502 geochemistry & geophysics01 natural sciencesAerosolThe arcticEarth sciencesClimatologyddc:550Polar amplificationEnvironmental sciencebusinesscomputer0105 earth and related environmental sciencescomputer.programming_languageBulletin of the American Meteorological Society
researchProduct