Search results for " conditional random quantities"
showing 5 items of 15 documents
Compounds of conditionals and iterated conditioning under coherence
2017
We discuss the problem of defining logical operations among conditional events. Differently from many authors, we define the conjunction and disjunction in the setting of conditional random quantities. In probability theory and in probability logic a relevant problem, largely discussed by many authors, is that of defining logical operations among conditional events. In the many works concerning these operations, the conjunction and disjunction have been usually defined as suitable conditional events. In Kaufmann 2009 it has been proposed a theory for the compounds of conditionals which has been framed in the setting of coherence in (Gilio and Sanfilippo , 2013, 2014) In this framework, whic…
On compound and iterated conditionals
2021
We illustrate the notions of compound and iterated conditionals introduced, in recent papers, as suitable conditional random quantities, in the framework of coherence. We motivate our definitions by examining some concrete examples. Our logical operations among conditional events satisfy the basic probabilistic properties valid for unconditional events. We show that some, intuitively acceptable, compound sentences on conditionals can be analyzed in a rigorous way in terms of suitable iterated conditionals. We discuss the Import-Export principle, which is not valid in our approach, by also examining the inference from a material conditional to the associated conditional event. Then, we illus…
Interpreting Connexive Principles in Coherence-Based Probability Logic
2021
We present probabilistic approaches to check the validity of selected connexive principles within the setting of coherence. Connexive logics emerged from the intuition that conditionals of the form If \(\mathord {\thicksim }A\), then A, should not hold, since the conditional’s antecedent \(\mathord {\thicksim }A\) contradicts its consequent A. Our approach covers this intuition by observing that for an event A the only coherent probability assessment on the conditional event \(A|\bar{A}\) is \(p(A|\bar{A})=0\). Moreover, connexive logics aim to capture the intuition that conditionals should express some “connection” between the antecedent and the consequent or, in terms of inferences, valid…
On general conditional random quantities
2009
In the first part of this paper, recalling a general discussion on iterated conditioning given by de Finetti in the appendix of his book, vol. 2, we give a representation of a conditional random quantity $X|HK$ as $(X|H)|K$. In this way, we obtain the classical formula $\pr{(XH|K)} =\pr{(X|HK)P(H|K)}$, by simply using linearity of prevision. Then, we consider the notion of general conditional prevision $\pr(X|Y)$, where $X$ and $Y$ are two random quantities, introduced in 1990 in a paper by Lad and Dickey. After recalling the case where $Y$ is an event, we consider the case of discrete finite random quantities and we make some critical comments and examples. We give a notion of coherence fo…
Conjunction, Disjunction and Iterated Conditioning of Conditional Events
2013
Starting from a recent paper by S. Kaufmann, we introduce a notion of conjunction of two conditional events and then we analyze it in the setting of coherence. We give a representation of the conjoined conditional and we show that this new object is a conditional random quantity, whose set of possible values normally contains the probabilities assessed for the two conditional events. We examine some cases of logical dependencies, where the conjunction is a conditional event; moreover, we give the lower and upper bounds on the conjunction. We also examine an apparent paradox concerning stochastic independence which can actually be explained in terms of uncorrelation. We briefly introduce the…