Search results for " confinement."

showing 10 items of 92 documents

Limitation of the ECRIS performance by kinetic plasma instabilities (invited).

2016

Electron cyclotron resonance ion source (ECRIS) plasmas are prone to kinetic instabilities due to anisotropic electron velocity distribution. The instabilities are associated with strong microwave emission and periodic bursts of energetic electrons escaping the magnetic confinement. The instabilities explain the periodic ms-scale oscillation of the extracted beam current observed with several high performance ECRISs and restrict the parameter space available for the optimization of extracted beam currents of highly charged ions. Experiments with the JYFL 14 GHz ECRIS have demonstrated that due to the instabilities the optimum Bmin-field is less than 0.8BECR, which is the value suggested by …

Physicsta114OscillationMagnetic confinement fusionPlasmaElectron01 natural sciencesplasma electronsElectron cyclotron resonanceIon source010305 fluids & plasmasIon0103 physical scienceselectron cyclotron resonance ion sourceskinetic instabilitiesAtomic physics010306 general physicsInstrumentationBeam (structure)The Review of scientific instruments
researchProduct

Physicochemical investigation of cobalt?iron cyanide nanoparticles synthesized by a novel solid?solid reaction in confined space

2004

Cobalt–iron cyanide (Cox[Fe(CN)6]) nanoparticles have been synthesized by a novel solid–solid reaction in the confined space of dry sodium bis(2-ethylhexyl)sulfosuccinate (AOT) reversed micelles dispersed in n-heptane. The reaction has been carried out by mixing two dry AOT/n-heptane solutions containing CoCl2 and K4Fe(CN)6 or K3Fe(CN)6 nanoparticles in the micellar core, respectively. By UV-Vis spectroscopy it was ascertained that, after the mixing process, the formation of stable nanoparticles is fast and complete. Microcalorimetric measurements of the thermal effect due to the Cox[Fe(CN)6] nanoparticle formation allowed the determination of the stoichiometric ratio (x) and of the molar e…

Polymers and PlasticsSmall-angle X-ray scatteringCyanidechemistry.chemical_elementNanoparticleMicellechemistry.chemical_compoundColloid and Surface ChemistryAdsorptionCobalt–iron cyanide complexes Nanoparticles Solid–solid reaction Confinement effect AOT reversed micelleschemistryX-ray photoelectron spectroscopyMaterials ChemistryPhysical chemistryOrganic chemistryPhysical and Theoretical ChemistryCobaltStoichiometrySettore CHIM/02 - Chimica FisicaColloid and Polymer Science
researchProduct

Size dependent light absorption modulation and enhanced carrier transport in germanium quantum dots devices

2015

Quantum confinement in closely packed arrays of Ge quantum dots (QDs) was studied for energy applications. In this work, we report an efficient tuning mechanism of the light harvesting and detection of Ge QDs. Thin films of SiGeO alloys, produced by rf-magnetron sputtering, were annealed at 600 degrees C in N-2 to induce precipitation of small amorphous Ge QDs into the oxide matrix. Varying the Ge content, the QD size was tailored between 2 and 4 nm, as measured by high resolution transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) measurements indicate the formation of pure SiO2, as well as the presence of a sub-stoichiometric Ge oxide shell at the QD interface. Light …

Precipitation (chemical)Materials scienceAmorphous alloyBand gapchemistry.chemical_elementHigh resolution transmission electron microscopyPhotoconductive gainGermaniumNanocrystalMetal-insulator semiconductor deviceSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della MateriaAbsorption spectroscopyQuantum confinement effectQuantum confinementElectromagnetic wave absorptionLight absorptionThin filmGermanium oxideOxide filmHigh-resolution transmission electron microscopyGermanium quantum dotPotential wellMIS deviceAmorphous filmGermaniumQuantum dotsRenewable Energy Sustainability and the Environmentbusiness.industryPhotoconductivitySolar cellPreferential trappingMIM deviceSemiconductor deviceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhotovoltaicschemistryMetal insulator boundarieQuantum dotrf-Magnetron sputtering Semiconductor quantum dotOptoelectronicsCharge carrierX ray photoelectron spectroscopy Effective mass approximationbusinessQuantum chemistryPhotovoltaicMagnetron sputteringSolar Energy Materials and Solar Cells
researchProduct

Book Review: Spirituality in Dark Places: The Ethics of Solitary Confinement

2015

PsychoanalysisSociology and Political ScienceSolitary confinementSpiritualitySociologyCriminologyThe Sociological Review
researchProduct

The neutrinoless double beta decay of 76Ge, 82Se, 86Kr, 114Cd, 128, 130Te and 134, 136Xe in the framework of a relativistic quark confinement model

1991

The half-life of the 0+ → 0+ neutrinoless double beta decay is calculated for 76Ge, 82Se, 86Kr, 114Cd, 128, 130Te and 134, 136Xe and the upper limit for the effective neutrino mass of 3.0 eV is deduced from available experimental data. In addition, the contribution of the right-handed charged weak currents to the effective weak hamiltonian is estimated. The relevant parameters attain the values |〈Λ〉| < 4.1 × 10−6 and |〈ν〉| < 6.6 × 10−8. The nucleonic weak current is treated starting from the current quark level and evaluating the quark current using relativistic quark wave functions obtained from a Dirac equation with a harmonic confinement potential. The nuclear matrix elements of the thus…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsCurrent quarkNuclear physicssymbols.namesakeDirac equationDouble beta decaysymbolsHigh Energy Physics::ExperimentColor confinementNeutrinoWave functionRandom phase approximationNuclear Physics A
researchProduct

Spherical multiquark states in the chiral bag model

1984

Abstract We study n-quark systems (n = 3, 6, 12) in the chiral bag model. In order to handle the non-linearities of the model, the hedgehog ansatz for the Goldstone pion field is used. It is found that due to “warping” of the quark orbits in the presence of mean-field pion clouds, a strong repulsion is developed when more than three quarks are put in a bag. This repulsion mechanism turns out to be close to the soliton mechanism discovered by Skyrme two decades ago. Even the magnitude of the repulsion agrees with his. It is also possible to relate the repulsion to the effective quenching of the axial charge of the multiquark system and a suggestion is made that the recently observed quenchin…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyNuclear TheoryCharge (physics)Nuclear matterBaryonPionSolitonColor confinementAnsatzNuclear Physics A
researchProduct

Relativistic constituent quark model with infrared confinement

2009

We refine the relativistic constituent quark model developed in our previous papers to include the confinement of quarks. It is done, first, by introducing the scale integration in the space of alpha-parameters, and, second, by cutting this scale integration on the upper limit which corresponds to an infrared cutoff. In this manner one removes all possible thresholds presented in the initial quark diagram. The cutoff parameter is taken to be the same for all physical processes. We adjust other model parameters by fitting the calculated quantities of the basic physical processes to available experimental data. As an application, we calculate the electromagnetic form factors of the pion and t…

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsQuark modelHadronNuclear TheoryConstituent quarkFOS: Physical sciencesOmega baryon01 natural sciencesHigh Energy Physics - PhenomenologyPionHigh Energy Physics - Phenomenology (hep-ph)Quantum electrodynamics0103 physical sciencesHigh Energy Physics::ExperimentColor confinement010306 general physics
researchProduct

Confined quarks and the neutrinoless ββ decay

1990

Abstract The half life of the neutrinoless double beta decay of 76Ge into the ground state of 76Se is calculated in a relativistic quark confinement model. The neutron-proton quasi-particle random phase approximation is used to evaluate the nuclear matrix elements involved in the decay amplitude. We avoid the closure approximation, but compare our results with this approximation. From the experimental half life we deduce an upper limit for the Majorana mass of the neutrino and estimate the right-handed contribution to the charged weak current.

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsNuclear TheoryForm factor (quantum field theory)Nuclear physicsMAJORANADouble beta decayHigh Energy Physics::ExperimentColor confinementNeutrinoRandom phase approximationGround statePhysics Letters B
researchProduct

Direct interpretation of near-field optical images

2001

International audience; The interpretation of the detection process in near-field optical microscopy is reviewed on the basis of a discussion about the possibility of establishing direct comparisons between experimental images and the solutions of Maxwell equations or the electromagnetic local density of states. On the basis of simple physical arguments, it is expected that the solutions of Maxwell equations should agree with images obtained by collecting mode near-field microscopes, while the electromagnetic local density of states should be considered to provide a practical interpretation of illumination mode near-field microscopes. We review collecting mode near-field microscope images w…

SURFACE-STRUCTURESLIGHT CONFINEMENTRESOLUTIONPROPAGATOR[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPLASMONSSCATTERING[ SPI.NANO ] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsMICROSCOPY[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
researchProduct

Analysis of metallic impurity content by means of VUV and SXR diagnostics in hybrid discharges with hot-spots on the JET-ITER-like wall poloidal limi…

2019

In preparation for the upcoming JET D-T campaign, great effort has been devoted during the 2015-2016 JET campaigns with the ITER-like wall (ILW) to the extension of the high performance H-mode phase in baseline and hybrid scenarios. Hybrid discharges were the only ones that have been stopped by the real-time vessel protection system due hot-spot formation on the outboard poloidal limiter. Generation of hot-spots was linked to the application of high neutral beams injection and ion cyclotron resonance heating (ICRH) power. In tokamaks with high-Z plasma components, the use of ICRH heating is also accompanied by an increased metallic impurity content. Simultaneous control of hot-spot temperat…

SXRhot-spot; plasma impurity; plasma physics; SXR; tokamaks; tungsten; VUV spectroscopyplasma impurityMaterials scienceTokamaktungsten01 natural sciences010305 fluids & plasmasIonlaw.inventionImpuritylaw0103 physical sciencesplasma physicLimiter010306 general physicstokamakJet (fluid)plasma physicsMagnetic confinement fusionPlasmahot-spotCondensed Matter PhysicsNuclear Energy and EngineeringElectric currentAtomic physicstokamaksVUV spectroscopy
researchProduct