Search results for " control."
showing 10 items of 7562 documents
Towards the Design of Robotic Drivers for Full-Scale Self-Driving Racing Cars
2019
Autonomous vehicles are undergoing a rapid development thanks to advances in perception, planning and control methods and technologies achieved in the last two decades. Moreover, the lowering costs of sensors and computing platforms are attracting industrial entities, empowering the integration and development of innovative solutions for civilian use. Still, the development of autonomous racing cars has been confined mainly to laboratory studies and small to middle scale vehicles. This paper tackles the development of a planning and control framework for an electric full scale autonomous racing car, which is an absolute novelty in the literature, upon which we report our preliminary experim…
Stealthy Attacks in Cloud-Connected Linear Impulsive Systems
2018
This paper studies a security problem for a class cloud-connected multi-agent systems, where autonomous agents coordinate via a combination of short-range ad-hoc commu- nication links and long-range cloud services. We consider a simplified model for the dynamics of a cloud-connected multi- agent system and attacks, where the states evolve according to linear time-invariant impulsive dynamics, and attacks are modeled as exogenous inputs designed by an omniscent attacker that alters the continuous and impulsive updates. We propose a definition of attack detectability, characterize the existence of stealthy attacks as a function of the system parameters and attack properties, and design a fami…
Distributed adaptive leader–follower and leaderless consensus control of a class of strict-feedback nonlinear systems : a unified approach
2020
In this paper, distributed adaptive consensus for a class of strict-feedback nonlinear systems under directed topology condition is investigated. Both leader–follower and leaderless cases are considered in a unified framework. To design distributed controller for each subsystem, a local compensatory variable is generated based on the signals collected from its neighbors. Such a technique enables us to solve the leader–follower consensus and leaderless consensus problems in a unified framework. And it further allows us to treat the leaderless consensus as a special case of the leader–follower consensus. For leader–follower consensus, the assumption that the leader trajectory is linearly para…
Compensation of Nonlinear Torsion in Flexible Joint Robots: Comparison of Two Approaches
2015
Flexible joint robots, in particularly those which are equipped with harmonic-drive gears, can feature elasticities with hysteresis. Under heavy loads and large joint torques the hysteresis lost motion can lead to significant errors of tracking and positioning of the robotic links. In this paper, two approaches for compensating the nonlinear joint torsion with hysteresis are described and compared with each other. Both methods assume the measured signals available only on the motor side of joint transmissions. The first approach assumes a rigid-link manipulator model and transforms the desired link trajectory into that of the motor drives by using the inverse dynamics and inverse hysteresis…
Internal model-based feedback control design for inversion-free feedforward rate-dependent hysteresis compensation of piezoelectric cantilever actuat…
2018
Abstract This study proposes a new rate-dependent feedforward compensator for compensation of hysteresis nonlinearities in smart materials-based actuators without considering the analytical inverse model. The proposed rate-dependent compensator is constructed with the inverse multiplicative structure of the rate-dependent Prandtl–Ishlinskii (RDPI) model. The study also presents an investigation for the compensation error when the proposed compensator is applied in an open-loop feedforward manner. Then, an internal model-based feedback control design is applied with the proposed feedforward compensator to a piezoelectric cantilever actuator. The experimental results illustrate that the propo…
Accelerated bearing life-Time test rig development for low speed data acquisition
2017
Condition monitoring plays an important role in rotating machinery to ensure reliability of the equipment, and to detect fault conditions at an early stage. Although health monitoring methodologies have been thoroughly developed for rotating machinery, low-speed conditions often pose a challenge due to the low signal-to-noise ratio. To this aim, sophisticated algorithms that reduce noise and highlight the bearing faults are necessary to accurately diagnose machines undergoing this condition. In the development phase, sensor data from a healthy and damaged bearing rotating at low-speed is required to verify the performance of such algorithms. A test rig for performing accelerated life-time t…
On Stability of Virtual Torsion Sensor for Control of Flexible Robotic Joints with Hysteresis
2019
Author's accepted manuscript (postprint). This article has been published in a revised form in Robotica, http://doi.org/10.1017/S0263574719001358. This version is free to view and download for private research and study only. Not for re-distribution or re-use. © 2019 Cambridge University Press. Available from 25/03/2020. Aim of the virtual torsion sensor (VTS) is in observing the nonlinear deflection in the flexible joints of robotic manipulators and, by its use, improving positioning control of the joint load. This model-based approach utilizes the motor-side sensing only and, therefore, replaces the load-side encoders at nearly zero hardware costs. For being applied in the closed control …
Hankelet-based action classification for motor intention recognition
2017
Powered lower-limb prostheses require a natural, and an easy-to-use, interface for communicating amputee’s motor intention in order to select the appropriate motor program in any given context, or simply to commute from active (powered) to passive mode of functioning. To be widely accepted, such an interface should not put additional cognitive load at the end-user, it should be reliable and minimally invasive. In this paper we present a one such interface based on a robust method for detecting and recognizing motor actions from a low-cost wearable sensor network mounted on a sound leg providing inertial (accelerometer, gyrometer and magnetometer) data in real-time. We assume that the sensor…
End-to-end congestion control protocols for remote programming of robots, using heterogeneous networks: A comparative analysis
2008
There are many interesting aspects of Internet Telerobotics within the network robotics context, such as variable bandwidth and time-delays. Some of these aspects have been treated in the literature from the control point of view. Moreover, only a little work is related to the way Internet protocols can help to minimize the effect of delay and bandwidth fluctuation on network robotics. In this paper, we present the capabilities of TCP, UDP, TCP Las Vegas, TEAR, and Trinomial protocols, when performing a remote experiment within a network robotics application, the UJI Industrial Telelaboratory. Comparative analysis is presented through simulations within the NS2 platform. Results show how th…
Adaptive Neural Control of MIMO Nonstrict-Feedback Nonlinear Systems with Time Delay
2016
In this paper, an adaptive neural output-feedback tracking controller is designed for a class of multiple-input and multiple-output nonstrict-feedback nonlinear systems with time delay. The system coefficient and uncertain functions of our considered systems are both unknown. By employing neural networks to approximate the unknown function entries, and constructing a new input-driven filter, a backstepping design method of tracking controller is developed for the systems under consideration. The proposed controller can guarantee that all the signals in the closed-loop systems are ultimately bounded, and the time-varying target signal can be tracked within a small error as well. The main con…