Search results for " correlations"
showing 10 items of 158 documents
2q13 microdeletion syndrome: Report on a newborn with additional features expanding the phenotype
2021
In this paper we describe an additional newborn patient with craniofacial dysmorphisms, congenital heart disease, hypotonia and a 2q13 deletion of 1.7 Mb, whose clinical and genomic findings are consistent with the diagnosis of 2q13 microdeletion syndrome.
Measurement of photon?jet transverse momentum correlations in 5.02 TeV Pb + Pb and pp collisions with ATLAS
2019
Jets created in association with a photon can be used as a calibrated probe to study energy loss in the medium created in nuclear collisions. Measurements of the transverse momentum balance between isolated photons and inclusive jets are presented using integrated luminosities of 0.49 nb−1 of Pb + Pb collision data at TeV and 25 pb−1 of pp collision data at TeV recorded with the ATLAS detector at the LHC. Photons with transverse momentum GeV and are paired with all jets in the event that have GeV and pseudorapidity . The transverse momentum balance given by the jet-to-photon ratio, , is measured for pairs with azimuthal opening angle . Distributions of the per-photon jet yield as a function…
Modeling spectral correlations of photon-pairs generated in liquid-filled photonic crystal fiber
2020
The generation of photon-pairs with controllable spectral correlations is crucial in quantum photonics. Here we present the design of a photonic crystal fiber to generate widely-spaced four-wave mixing bands with spectral correlations that can be tuned through the thermo-optic effect after being infiltrated with heavy water. We present a theoretical study of the purity of the signal (idler) photon generated as a function of temperature, pump spectral linewidth and the length of the fiber. 511-6/18-8876 CIIC155/2019 APN-624 TEC2016- 76664-C2-1-R PROMETEO/2019/048
Averages of $b$-hadron, $c$-hadron, and $\tau$-lepton properties as of summer 2016
2017
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\tau$-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, \CP~violation parameters, parameters of semileptonic decays and CKM matrix elements.
Bose-Einstein correlations in W-pair decays with an event-mixing technique
2005
Bose-Einstein correlations in W-pair decays are studied using data collected by the ALEPH detector at LEP at e(+)e(-) centre-of-mass energies from 183 to 209 GeV. The analysis is based on the comparison of WW --> q (q) over barq (q) over bar events to "mixed" events constructed with the hadronic part of WW --> q (q) over bar lv events. The data are in agreement with the hypothesis that Bose-Einstein correlations are present only for pions from the same W decay. The JETSET model with Bose-Einstein correlations between pions from different W bosons is disfavoured. (C) 2004 Elsevier B.V. All rights reserved.
Quantum correlations in PT -symmetric systems
2021
Abstract We study the dynamics of correlations in a paradigmatic setup to observe PT -symmetric physics: a pair of coupled oscillators, one subject to a gain one to a loss. Starting from a coherent state, quantum correlations (QCs) are created, despite the system being driven only incoherently, and can survive indefinitely. Both total and QCs exhibit different scalings of their long-time behavior in the PT -broken/unbroken phase and at the exceptional point (EP). In particular, PT symmetry breaking is accompanied by non-zero stationary QCs. This is analytically shown and quantitatively explained in terms of entropy balance. The EP in particular stands out as the most classical configuration…
Enhancing nonclassical bosonic correlations in a Quantum Walk network through experimental control of disorder
2021
The presence of disorder and inhomogeneities in quantum networks has often been unexpectedly beneficial for both quantum and classical resources. Here, we experimentally realize a controllable inhomogenous Quantum Walk dynamics, which can be exploited to investigate the effect of coherent disorder on the quantum correlations between two indistinguishable photons. Through the imposition of suitable disorder configurations, we observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network, compared to the case of an ordered Quantum Walk. Different configurations of disorder can steer the system towards different realizations of such an enha…
Non-Markovian Wave Function Simulations of Quantum Brownian Motion
2005
The non-Markovian wave function method (NMWF) using the stochastic unravelling of the master equation in the doubled Hilbert space is implemented for quantum Brownian motion. A comparison between the simulation and the analytical results shows that the method can be conveniently used to study the non-Markovian dynamics of the system.
Nuclear matrix elements for double beta decay in the QRPA approach: a critical review
2009
The calculation of nuclear matrix elements (NME) for double beta decay transitions (DBD) relies upon several approximations. The purpose of this note is to review some of these approximations, and their impact upon the NME. We shall present our results, which have been obtained in the framework of the proton-neutron quasiparticle random phase approximation (pnQRPA), and we shall focus on short range correlations, pairing, and symmetry effects.
Emission of fragments in Ca+Ca reaction at 25 MeV/nucleon
2013
We discuss experimental data concerning 40,48Ca+ 40,48Ca reactions at 25 MeV/nucleon; the 4π multi-detector Chimera has been used as detection device. Effects that can be attributed to the neutron to proton ratios (N/Z) degree of freedom have been investigated. From the analysis of experimental data it seems that the neutron richness of the interacting system plays an important role on the evolution of fusion-like sources formed in semi-central collisions. In particular, it is observed that the larger is the neutron content and the larger is the emission of heavy residues. Experimental data have been compared with CoMD-II model calculations; a moderately stiff symmetry energy should be used…