Search results for " critical point"
showing 10 items of 55 documents
Three solutions for a two-point boundary value problem with the prescribed mean curvature equation
2015
The existence of at least three classical solutions for a parametric ordinary Dirichlet problem involving the mean curvature operator are established. In particular, a variational approach is proposed and the main results are obtained simply requiring the sublinearity at zero of the considered nonlinearity.
On the existence and multiplicity of solutions for Dirichlet's problem for fractional differential equations
2016
In this paper, by using variational methods and critical point theorems, we prove the existence and multiplicity of solutions for boundary value problem for fractional order differential equations where Riemann-Liouville fractional derivatives and Caputo fractional derivatives are used. Our results extend the second order boundary value problem to the non integer case. Moreover, some conditions to determinate nonnegative solutions are presented and examples are given to illustrate our results.
Characterization of the pressure induced Ringwoodite toMg-perovskite and Mg-wüstite phase transition by Catastrophe Theory
2010
The pressure-induced ringwoodite to Mg-perovskite and periclase post-spinel phase transition: a Bader’s topological analysis of the ab initio electro…
2011
In order to characterize the pressure-induced decomposition of ringwoodite (c-Mg2SiO4), the topological analysis of the electron density q(r), based upon the theory of atoms in molecules (AIM) developed by Bader in the framework of the catastrophe theory, has been performed. Calculations have been carried out by means of the ab initio CRYSTAL09 code at the HF/DFT level, using Hamiltonians based on the Becke- LYP scheme containing hybrid Hartree– Fock/density functional exchange–correlation terms. The equation of state at 0 K has been constructed for the three phases involved in the post-spinel phase transition (ringwoodite -> Mg-perovskite + periclase) occurring at the transition zone–lower…
Oscillatory integrals and fractal dimension
2021
Theory of singularities has been closely related with the study of oscillatory integrals. More precisely, the study of critical points is closely related to the study of asymptotic of oscillatory integrals. In our work we investigate the fractal properties of a geometrical representation of oscillatory integrals. We are motivated by a geometrical representation of Fresnel integrals by a spiral called the clothoid, and the idea to produce a classification of singularities using fractal dimension. Fresnel integrals are a well known class of oscillatory integrals. We consider oscillatory integral $$ I(\tau)=\int_{; ; \mathbb{; ; R}; ; ^n}; ; e^{; ; i\tau f(x)}; ; \phi(x) dx, $$ for large value…
Calibrations and isoperimetric profiles
2007
We equip many noncompact nonsimply connected surfaces with smooth Riemannian metrics whose isoperimetric profile is smooth, a highly nongeneric property. The computation of the profile is based on a calibration argument, a rearrangement argument, the Bol-Fiala curvature dependent inequality, together with new results on the profile of surfaces of revolution and some hardware know-how.
The index of stable critical points
2002
Abstract In this paper we show that in dimension greater or equal than 3 the index of a stable critical point can be any integer. More concretely, given any k∈ Z and n⩾3 we construct a C ∞ vector field on R n with a unique critical point which is stable (in positive and negative time) and has index equal to k. This result extends previous ones on the index of stable critical points.
Multiple solutions for a discrete boundary value problem involving the p-Laplacian.
2008
Multiple solutions for a discrete boundary value problem involving the p-Laplacian are established. Our approach is based on critical point theory.
Magnetic quantum criticality in quasi-one-dimensional Heisenberg antiferromagnet Cu (C4H4N2)( NO 3)2
2016
We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so-called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitativ…
Quasiparticles and quantum phase transition in universal low-temperature properties of heavy-fermion metals
2006
We demonstrate, that the main universal features of the low temperature experimental $H-T$ phase diagram of CeCoIn5 and other heavy-fermion metals can be well explained using Landau paradigm of quasiparticles. The main point of our theory is that above quasiparticles form so-called fermion-condensate state, achieved by a fermion condensation quantum phase transition (FCQPT). When a heavy fermion liquid undergoes FCQPT, the fluctuations accompanying above quantum critical point are strongly suppressed and cannot destroy the quasiparticles. The comparison of our theoretical results with experimental data on CeCoIn5 have shown that the electronic system of above substance provides a unique opp…