Search results for " diffusion"
showing 10 items of 521 documents
Tracer diffusion properties of core-shell latex films studied by photoinduced grating relaxation
2007
This article reports the application of the Photo-Induced Grating Relaxation technique (also known as Forced Rayleigh Scattering) to investigate the dynamics of films prepared from structured core–shell latex particles via the transport property of the photochromic tracer molecule Aberchrome 540®. The core–shell particles were prepared with a fluoropolymer core (immiscible and impenetrable to the tracer) and a poly(butyl methacrylate) shell. The incompletely dried films (with residual water) manifest their spatial heterogeneity via non-Fickian behavior (spatial scale- dependent apparent diffusion coefficient). The diffusion data was interpreted using the two-state diffusion model, previousl…
Anisotropic diffusion in etched particle tracks studied by field gradient NMR
1994
Etched particle tracks produced after heavy ion irradiation of polymer foils are used as model systems to test the performance of NMR in a newly developed ultrahigh magnetic field gradient system. The stimulated NMR echo decay of molecules diffusing in the channels, formulated in terms of the self part of the intermediate scattering function, is anisotropic and yields the form factor of the channels.
Penetrant diffusion in frozen polymer matrices: A finite-size scaling study of free volume percolation
1996
The diffusion of penetrant particles in frozen polymer matrices is investigated by means of Monte Carlo simulations of the bond fluctuation model. By applying finite-size scaling to data obtained from very large systems it is demonstrated that the diffusion process takes place on a percolating free volume cluster describable by a correlated site percolation model which falls into the same universality class as random percolation. The diverging correlation length entails a pronounced dependence of the diffusion constant on the size of the simulated system. It is shown that this dependence is appreciable for a wide range of parameters around the transition. \textcopyright{} 1996 The American …
1977
Self-Assembling of Peptide/Membrane Complexes by Atomistic Molecular Dynamics Simulations
2007
Abstract Model biological membranes consisting of peptide/lipid-bilayer complexes can nowadays be studied by classical molecular dynamics (MD) simulations at atomic detail. In most cases, the simulation starts with an assumed state of a peptide in a preformed bilayer, from which equilibrium configurations are difficult to obtain due to a relatively slow molecular diffusion. As an alternative, we propose an extension of reported work on the self-organization of unordered lipids into bilayers, consisting of including a peptide molecule in the initial random configuration to obtain a membrane-bound peptide simultaneous to the formation of the lipid bilayer. This strategy takes advantage of the…
Rigid polymer materials with hologram enhancement by molecular diffusion
2003
The principle of diffusional enhancement has been embodied in the rigid glassy polymer with phenanthrenequinone able to photochemically attach to surrounding macromolecules, thus forming a permanent grating. Owing to material stiffness, it does not suffer from shrinkage and can be made very thick; serving a basis for very stable spectrally selective elements. Replacement of commonly used acrylic glass by polycarbonate ensures further significant improvement of performance and stability of 3D holographic optical elements and memories.
Probe diffusion in homogeneous diblock copolymers
1998
Forced Rayleigh scattering was used to investigate the diffusion of a photoreactive dye molecule in two homogeneous poly(styrene-b-isoprene) (SI) diblock copolymers with overall molecular weights of approximately 2000. Although diffusion rates were intermediate to TTI transport in homopolymer polystyrene (PS) and polyisoprene (PI), system dynamics appear to be largely dictated in each case by the PI block. The size of the polymer jumping unit, on the other hand, is evaluated from a free-volume analysis of the data, and is found to be governed predominantly by the PS component of the copolymer. The mechanism for tracer diffusion in low-molecular-weight block copolymers appears analogous to t…
Scale dependent diffusion in latex films studied by photoinduced grating relaxation technique
2003
The transition from an aqueous dispersion of polyacrylate latices into a homogeneous polymer film on drying has been studied by monitoring the diffusion of hydrophobic and hydrophilic photochromic molecular probes with the help of a holographic grating relaxation (forced Rayleigh scattering) technique. Experiments with the hydrophobic probe in wet films result in an unusual spatial scale-dependence of the apparent diffusion coefficient that degenerates into a normal scale-independent diffusion coefficient as the film dries. Employment of a two-state diffusion model allows extracting the diffusion coefficients and mean displacements of the tracer in the polymer cores of the latex particles a…
Anomalous diffusion in polymer melts
2002
Abstract We present a study of the anomalous diffusion regimes in polymer melt dynamics performing a Monte Carlo (MC) simulation of the bond-fluctuation lattice model. Special emphasis is laid on the crossover from a Rouse-like motion to the behavior predicted by reptation theory. For the longest chains of N=400 the high statistical accuracy of the data allows for clear identification of the subdiffusive regimes in the center of mass motion and the monomer displacement. They are well compatible with those predicted by reptation theory. Furthermore a detailed analysis of the different short time anomalous diffusion regimes in the melt dynamics of polymer chains is presented and it is shown t…
Selfdiffusion of polymer chains in solutions and melts
2005
Anomalous diffusion of monomers of polymer chains, as well as motion of these chains as a whole, is discussed with an emphasis on Monte Carlo simulations and simple scaling concepts. While the behavior of isolated chains in good solvents or Theta-solvents without excluded volume interactions is fully accounted for by the Rouse model, the behavior is less clear both for isolated chains in bad solvents and for chains in dense melts. Collapsed chains are shown to diffuse as g3(t) = <([rCM (t) -rCM(0)]2〉 ∝ tξ3 where the (effective?) exponent ξ3 simply seems to be linearly temperature-dependent for temperatures T lower than the Σ-temperature, ξ3 T/Θ. A relaxation time τ oc N3 is found, and scali…