Search results for " diffusion"

showing 10 items of 521 documents

Mobility, interdiffusion, and tracer diffusion in lattice-gas models of two-component alloys

1989

The transport properties of lattice-gas models of alloys with two particle species are studied. The numbers of the particles and vacancies are conserved, and the two particle species have different exchange rates with the vacancies. The mobility and interdiffusion is described by the linear Onsager theory of transport. The Onsager coefficients are estimated from numerical simulations of the mobilities. A recently proposed relation between the Onsager coefficients of the random-alloy model is verified. The interdiffusion of the two species is directly monitored in the simulations; it is well described by the estimated Onsager coefficients. The results on interdiffusion are compared with simu…

Condensed Matter::Soft Condensed MatterCondensed Matter::Materials ScienceMaterials scienceLattice (order)TRACERGrain boundary diffusion coefficientEffective diffusion coefficientInverseThermodynamicsComputer Science::OtherPhysical Review B
researchProduct

Anisotropic motion of toluene above and below the glass transition studied by 2H NMR

1995

Abstract 2 H nuclear magnetic resonance spin-lattice relaxation experiments on two selectively deuterated toluene molecules have been performed over a wide temperature range, spanning liquid and glassy states, to examine anisotropic molecular dynamics. In the liquid regime, the relaxation data are analyzed by the model of anisotropic rotational diffusion. A more phenomenological ansatz is used for the whole temperature regime to obtain information about anisotropic reorientation and its temperature dependence. We find that the anisotropy is reduced in the supercooled state and the motion becomes approximately isotropic below 140 K which is interpreted as the onset of cooperative reorientati…

Condensed Matter::Soft Condensed MatterMolecular dynamicsCondensed matter physicsChemistryIsotropyRelaxation (NMR)General Physics and AstronomyRotational diffusionPhysical and Theoretical ChemistryAtmospheric temperature rangeAnisotropySupercoolingGlass transitionChemical Physics Letters
researchProduct

Computer Simulations for Polymer Dynamics

1991

In this paper we review recent work on the dynamics of polymeric systems using computer simulation methods. For a two-dimensional polymer melt, we show that the chains segregate and the dynamics can be described very well by the Rouse model. This simulation was carried out using the bond fluctuation Monte Carlo method. For three-dimensional (3d) melts and for the study of hydrodynamic effects, we use a molecular dynamics simulation. For 3d melts our results strongly support the concept of reptation. A detailed comparison to experiment shows that we can predict the time and length scales for the onset of reptation for a variety of polymeric liquids. For a single chain, we find the expected h…

Condensed Matter::Soft Condensed MatterPersistence lengthMean squared displacementQuantitative Biology::BiomoleculesWork (thermodynamics)ReptationMolecular dynamicsMaterials scienceMonte Carlo methodStatistical physicsScalingFick's laws of diffusion
researchProduct

Anomalous diffusion of polymers in supercooled melts near the glass transition

2007

Two coarse-grained models for polymer chains in dense melts near the glass transition are investigated: the bond fluctuation lattice model, where long bonds are energetically favored, is studied by dynamic Monte Carlo simulation, and an off-lattice bead-spring model with Lennard-Jones forces between the beads is treated by Molecular Dynamics. We compare the time-dependence of the mean square displacements of both models, and show that they become very similar on mesoscopic scales (i.e., displacements larger than a bond length). The slowing down of motions near the glass transition is discussed in terms of the mode coupling theory and other concepts.

Condensed Matter::Soft Condensed MatterPhysicsBond lengthQuantitative Biology::BiomoleculesMesoscopic physicsMolecular dynamicsCondensed matter physicsAnomalous diffusionMonte Carlo methodSupercoolingGlass transitionLattice model (physics)
researchProduct

A New Colloid Model for Dissipative-Particle-Dynamics Simulations

2016

We propose a new model to simulate spherical colloids. This is a mesoscopic method based on the dissipative particle dynamics. The colloid is represented by a large spherical bead, and its surface interacts with the solvent beads through a pair of dissipative and stochastic forces. This new model extends the tunable-slip boundary condition [Eur. Phys. J. E 26, 115 (2008)] from planar surfaces to curved geometry, thus allows one to study colloids with slippery surfaces. Simulation results show good agreement with the prediction of hydrodynamic theories, indicating the hydrodynamic interactions are properly accounted in our new model.

Condensed Matter::Soft Condensed MatterPhysicsSurface (mathematics)ColloidMesoscopic physicsPlanarClassical mechanicsDissipative particle dynamicsDissipative systemBoundary value problemFick's laws of diffusion
researchProduct

Nonexponential 2H spin-lattice relaxation as a signature of the glassy state

1990

Abstract High-precision measurements of 2H spin-lattice relaxation on several molecular glass-forming liquids have been performed. As a general feature the following can be stated: At temperatures more than ten to twenty degrees above the calorimetric glass transition temperature Tg the 2H spin-lattice relaxation is exponential; below that temperature regime the relaxation is nonexponential. This crossover from exponential to nonexponential magnetization recovery implies that no common spin temperature caused by spin diffusion exists in a 2H glass. This contrasts 1H spin-lattice relaxation which is found to be strictly monoexponential throughout. The occurrence of nonexponential 2H relaxati…

Condensed matter physicsChemistrySpin–lattice relaxationGeneral Physics and AstronomyObservableCondensed Matter::Disordered Systems and Neural NetworksExponential functionMagnetizationNuclear magnetic resonanceSpin diffusionRelaxation (physics)Physical and Theoretical ChemistryGlass transitionSpin-½Chemical Physics Letters
researchProduct

Testing Mode-Coupling Theory for a Supercooled Binary Lennard-Jones Mixture I: The van Hove Correlation Function

1995

We report the results of a large scale computer simulation of a binary supercooled Lennard-Jones liquid. We find that at low temperatures the curves for the mean squared displacement of a tagged particle for different temperatures fall onto a master curve when they are plotted versus rescaled time $tD(T)$, where $D(T)$ is the diffusion constant. The time range for which these curves follow the master curve is identified with the $\alpha$-relaxation regime of mode-coupling theory (MCT). This master curve is fitted well by a functional form suggested by MCT. In accordance with idealized MCT, $D(T)$ shows a power-law behavior at low temperatures. The critical temperature of this power-law is t…

Condensed matter physicsCondensed Matter (cond-mat)FOS: Physical sciencesThermodynamicsCondensed MatterPower lawFick's laws of diffusionMean squared displacementCondensed Matter::Soft Condensed MatterCorrelation function (statistical mechanics)AmplitudeMode couplingRelaxation (physics)Critical exponentMathematics
researchProduct

Tuning Of Organic Heterojunction Conductivity By The Substituents' Electronic Effects In Phthalocyanines For Ambipolar Gas Sensors

2021

Abstract Exploiting organic heterojunction effects in electrical devices are an important strategy to improve the electrical conductivity, which can be utilized into improving the conductometric gas sensors performances. In this endeavor, the present article reports fabrication of organic heterostructures in a bilayer device configuration incorporating octa-substituted nickel phthalocyanines (NiPc) and radical lutetium bis-phthalocyanine (LuPc2) and investigates their sensing properties towards NH3 vapor. NiPc having hexyl sulfanyl, hexyl sulfonyl and p-carboxyphenoxy moieties are synthesized, which electronic effects are electron donating, accepting and moderate accepting, respectively, al…

Conductometric TransducerMaterials science02 engineering and technologyConductivity010402 general chemistryPhotochemistry01 natural scienceschemistry.chemical_compoundAmmoniaSulfanylMaterials ChemistryElectronic effect[CHIM]Chemical SciencesElectrical and Electronic EngineeringInstrumentationComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationAmbipolar diffusionBilayerMetals and AlloysPhthalocyanineHeterojunctionElectron acceptor021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMolecular materialschemistryHeterojunctionCyclic voltammetryGas sensor0210 nano-technology
researchProduct

Optical saturation, diffusion and convection effects in thermal lens spectrometry

1995

Abstract In thermal lens spectrometry (TLS) the intense pump radiation can lead the chromophore to partial optical saturation conditions in which the ground state is depleted and the population of an intermediate excited state increases. A model in which the excitation process competes with both the decay processes and diffusion and convection of the species in the excited and ground states is developed. The model is used to explain the variations of the TLS/spectrophotometry sensitivity ratios found for a series of phthalein and azo dyes in aqueous media.

ConvectionMolecular diffusioneducation.field_of_studyChemistryPopulationAnalytical chemistryChromophoreBiochemistryMolecular physicsAnalytical ChemistryExcited stateThermalEnvironmental ChemistrySaturation (chemistry)Ground stateeducationSpectroscopyAnalytica Chimica Acta
researchProduct

Fronts propagating with signal dependent speed in limited diffusion and related Hamilton-Jacobi formulations

2021

We consider a class of limited diffusion equations and explore the formation of diffusion fronts as the result of a combination of diffusive and hyperbolic transport. We analyze a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion coefficient that depends on the unknown and on the gradient of the unknown. We explore the main features of the solution of the Hamilton-Jacobi equations that contain shocks and propose a suitable numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We analyze three model problems covering d…

ConvectionNumerical AnalysisDarcy's lawNumerical approximationApplied MathematicsMathematical analysisFunction (mathematics)Hamilton–Jacobi equationComputational MathematicsLimited diffusion equationsPiecewiseHeat equationDiffusion (business)Constant (mathematics)Hamilton-Jacobi equationsViscosity solutions with shocksMathematics
researchProduct