Search results for " dissolved"

showing 10 items of 82 documents

Characterization of paralytic shellfish toxins in seawater and sardines (Sardina pilchardus) during blooms of Gymnodinium catenatum

2010

Gymnodinium catenatum Vector Sardines Saxitoxins Paralytic shellfish poisoning Dissolved and particulate Planktivorous fish
researchProduct

Dissolved CO2 in natural waters: development of an automated monitoring system and first application to Stromboli volcano (Italy)

2011

The study of geochemical parameters applied to natural systems has provided improved knowledge of geochemical mechanisms of gas/rock dissolution in natural waters that are linked to gas-water and/or water-rock interaction processes. Here we present the results of our studies focused on the development of an automated monitoring system for measuring the amount of dissolved CO2 in natural waters. The system is based on the principle of a dynamic equilibrium between water and the air as the host gas. The PCO2 measurements were carried out every four hours, and the equilibration time was around 20 minutes. Moreover, application to the thermal aquifer of Stromboli volcano during the 2009-2010 pe…

Hydrologygeographygeography.geographical_feature_categoryNatural waterlcsh:QC801-809GeochemistryAquiferMonitoring systemlcsh:QC851-999Natural (archaeology)lcsh:Geophysics. Cosmic physicsGeophysicsVolcanolcsh:Meteorology. ClimatologyGas–water interaction Dissolved CO2 Fluid geochemistry Geochemical monitoring.DissolutionGeologyAnnals of Geophysics
researchProduct

A filtration model applied to submerged anaerobic MBRs (SAnMBRs)

2013

The aim of this study was to develop a model able to correctly reproduce the filtration process of submerged anaerobic MBRs (SAnMBRs). The proposed model was calibrated and validated in a SAnMBR demonstration plant fitted with industrial-scale hollow-fibre membranes. Three suspended components were contemplated in the model: total solids concentration; dry mass of cake on the membrane surface; and dry mass of irreversible fouling on the membrane surface. The model addressed the following physical processes: the build-up and compression of the cake layer during filtration; cake layer removal using biogas sparging to scour the membrane; cake layer removal during back-flushing; and the consoli…

INGENIERIA HIDRAULICAIndustrial-scale hollow-fibre membranesFiltration modelFoulingChemistryEnvironmental engineeringFiltration and SeparationTotal dissolved solidsPulp and paper industryBiochemistryResistance-in-series-basedMembraneBiogasSubmerged anaerobic MBRGeneral Materials ScienceLayer removalPhysical and Theoretical ChemistryMembrane surfaceAnaerobic exerciseSpargingTECNOLOGIA DEL MEDIO AMBIENTE
researchProduct

Oxygen consumption of F0 and F1 larval and juvenile European seabass Dicentrarchus labrax in resonse to ocean acidification and warming

2022

Ongoing climate change is leading to warmer and more acidic oceans. The future distribution of fish within the oceans depends on their capacity to adapt to these new environments. Only few studies have examined the effects of ocean acidification (OA) and warming (OW) on the metabolism of long-lived fish over successive generations. We therefore aimed to investigate the effect of OA on larval and juvenile growth and metabolism on two successive generations of European sea bass (Dicentrarchus labrax L.) as well as the effect of OAW on larval and juvenile growth and metabolism of the second generation. European sea bass is a large economically important fish species with a long generation time…

IdentificationDicentrarchus labrax routine metabolic rate per dry massLife stagedry massType of studyDicentrarchus labrax fork lengthGermanyWeightedCalculatedTreatment temperaturebody lengthlarval growthteleostOcean acidificationdissolvedTreatment partial pressure of carbon dioxideOptical oxygen meter with sensor OXR50 FireStingLaboratory experimentstandard metabolic rate per fresh massTreatment: temperatureDicentrarchus labrax standard metabolic rate per fresh massEarth System Researchmetabolic ratesUniform resource locator link to referenceDicentrarchus labrax dry massStereomicroscopy Leicafork lengthStereomicroscopy (Leica)GenerationOxygen dissolvedTank numberocean warmingjuvenile growthPyroScience GmbHAgeUniform resource locator/link to referenceDATE TIMEDicentrarchus labraxroutine metabolic rate per dry masswet weightedFulton's condition factorSpeciesFish wet weightedCaliperOptical oxygen meter with sensor OXROB10 (FireSting PyroScience GmbH Germany)Optical oxygen meter with sensor OXROB10 FireStingOptical oxygen meter with sensor OXR50 (FireSting PyroScience GmbH Germany)Fulton s condition factorOxygenDATE/TIMEFishSample IDTreatment: partial pressure of carbon dioxideDicentrarchus labrax body lengthmassDicentrarchus labrax mass
researchProduct

Biogas yield from Sicilian kitchen waste and cheese whey

2013

The aim of this study is to determine the chemical composition of kitchen waste and cheese whey, as well as the biogas yield obtained from the Anaerobic Digestion (AD) tests of these two raw materials. Since the separated waste collection is performed in the town of Marineo (Palermo), a sample of kitchen waste, different from food industry one and included in the Organic Fraction of Municipal Solid Waste (OFMSW), was collected from the mass stored at the households of this town. Moreover, a sample of cheese whey was collected in a Sicilian mini dairy plant, where sheep milk is processed. This investigation was carried out inside laboratory digesters of Aleksandras Stulginskis University (Li…

Municipal solid wasteFood industrybusiness.industryMechanical Engineeringlcsh:SSettore AGR/09 - Meccanica AgrariaBioengineeringWaste collectionRaw materialTotal dissolved solidslcsh:S1-972Industrial and Manufacturing Engineeringlcsh:AgricultureAnaerobic digestionBiogasEnvironmental scienceFood sciencelcsh:Agriculture (General)businessSheep milkanaerobic digestion biogas yieldcheese wheykitchen wasteanaerobic digestion biogas yield cheese whey kitchen waste.
researchProduct

Seawater carbonate chemistry and nest guarding behaviour of a temperate wrasse

2021

Organisms may respond to changing environmental conditions by adjusting their behaviour (i.e., behavioural plasticity). Ocean acidification (OA), resulting from anthropogenic emissions of carbon dioxide (CO2), is predicted to impair sensory function and behaviour of fish. However, reproductive behaviours, and parental care in particular, and their role in mediating responses to OA are presently overlooked. Here, we assessed whether the nesting male ocellated wrasse Symphodus ocellatus from sites with different CO2 concentrations showed different behaviours during their breeding season. We also investigated potential re-allocation of the time-budget towards different behavioural activities b…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationPotentiometric titrationRegistration number of speciesSalinityTemperateCalcite saturation statePotentiometricinorganicwaterAlkalinitySiteTemperature waterCarbon inorganic dissolvedUniform resource locator/link to referenceCalculated using seacarb after Nisumaa et al 2010Mediterranean SeaOcean Acidification International Coordination Centre OA ICCAnimaliaAragonite saturation stateBehaviourBicarbonate ionTime in secondsTypeNektonAlkalinity totalChordataCalculated using seacarb after Nisumaa et al. (2010)totalCO2 ventSpeciespHPelagosSymphodus ocellatusTemperatureCarbonate system computation flagdissolvedFugacity of carbon dioxide (water) at sea surface temperature (wet air)Carbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideSingle speciesEarth System ResearchFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfField observationUniform resource locator link to reference
researchProduct

Seawater carbonate chemistry and shell mineralogy, microstructure, and mechanical strength of four Mediterranean gastropod species near a CO2 seep

2017

Marine CO2 seeps allow the study of the long-term effects of elevated pCO2 (ocean acidification) on marine invertebrate biomineralization. We investigated the effects of ocean acidification on shell composition and structure in four ecologically important species of Mediterranean gastropods (two limpets, a top-shell snail, and a whelk). Individuals were sampled from three sites near a volcanic CO2 seep off Vulcano Island, Italy. The three sites represented ambient (8.15 pH), moderate (8.03 pH) and low (7.73 pH) seawater mean pH. Shell mineralogy, microstructure, and mechanical strength were examined in all four species. We found that the calcite/aragonite ratio could vary and increased sign…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationRegistration number of speciesSalinityTemperateinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalSalinity standard errorPatella caeruleatotalCO2 ventpHCalciteTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)standard errorEarth System ResearchField observationUniform resource locator link to referencePotentiometric titrationCalcite saturation stateLengthLocationPotentiometricwaterGrowth MorphologyHexaplex trunculusAlkalinity total standard errorBenthosUniform resource locator/link to referenceOsilinus turbinatusOther studied parameter or processMediterranean SeaOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionTypeTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)ForceSpeciespH standard errorCalculated using CO2SYSCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonElasticityTreatmentAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airAragoniteCarbon dioxideMolluscaGrowth/MorphologySingle speciesBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airPatella rusticaToughnessCoast and continental shelf
researchProduct

Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans

2015

Excessive CO2 in the present-day ocean-atmosphere system is causing ocean acidification, and is likely to cause a severe biodiversity decline in the future, mirroring effects in many past mass extinctions. Fossil records demonstrate that organisms surviving such events were often smaller than those before, a phenomenon called the Lilliput effect. Here, we show that two gastropod species adapted to acidified seawater at shallow-water CO2 seeps were smaller than those found in normal pH conditions and had higher mass-specific energy consumption but significantly lower whole-animal metabolic energy demand. These physiological changes allowed the animals to maintain calcification and to partial…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationSalinityTemperateBicarbonate ion standard deviationBottles or small containers/Aquaria (<20 L)Alkalinity total standard deviationinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedWidthCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateRespiration rate oxygenAlkalinity totalBottles or small containers Aquaria 20 LtotalCO2 ventpHRespirationCalcification rate of calcium carbonateTemperatureMonthdissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Temperature water standard deviationRespiration rateEarth System ResearchField observationstandard deviationThicknessCalcification/DissolutionPotentiometric titrationCalcite saturation statePotentiometricwaterPartial pressure of carbon dioxideSiteGrowth MorphologyFigureAragonite saturation state standard deviationBenthosMediterranean SeaOcean Acidification International Coordination Centre OA ICCCalcite saturation state standard deviationAnimaliaBicarbonate ionLONGITUDECalculated using seacarb after Nisumaa et al. (2010)SpeciesCyclope neriteaBottles or small containers/Aquaria (&lt;20 L)Calculated using CO2SYSHeightPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationCarbonate ion standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonHeight/width ratioTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideMolluscaGrowth/MorphologySingle speciesCalcification DissolutionLATITUDEHeight width ratioBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfNassarius corniculusoxygenTable
researchProduct

Seawater carbonate chemistry and biogenic habitat shifts under long-term ocean acidification

2023

Experiments have shown that increasing dissolved CO2 concentrations (i.e. Ocean Acidification, OA) in marine ecosystems may act as nutrient for primary producers (e.g. fleshy algae) or a stressor for calcifying species (e.g., coralline algae, corals, molluscs). For the first time, rapid habitat dominance shifts and altered competitive replacement from a reef-forming to a non-reef-forming biogenic habitat were documented over one-year exposure to low pH/high CO2 through a transplant experiment off Vulcano Island CO2 seeps (NE Sicily, Italy). Ocean acidification decreased vermetid reefs complexity via a reduction in the reef-building species density, boosted canopy macroalgae and led to chang…

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationSalinityTemperateCommunity composition and diversityinorganicAlkalinityDensityType of studyExperimentTemperature waterCarbon inorganic dissolvedAbundanceCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateAlkalinity totalSalinity standard errortotalCO2 ventpHTemperaturePartial pressure of carbon dioxide (water) at sea surface temperature (wet air) standard errordissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Field experimentstandard errorEarth System ResearchPotentiometric titrationCalcite saturation stateCoveragePotentiometricwaterSiteRocky-shore communityAlkalinity total standard errorBenthosReplicateMediterranean SeaOcean Acidification International Coordination Centre OA ICCBicarbonate ionTemperature water standard errorCalculated using seacarb after Nisumaa et al. (2010)pH standard errorCalculated using CO2SYSCarbonate system computation flagComplexityFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonBiomass/Abundance/Elemental compositionAragonite saturation state standard errorPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideEntire communityRocky shore communityFugacity of carbon dioxide water at sea surface temperature wet airBiomass Abundance Elemental compositionCoast and continental shelfSpecies richness
researchProduct

The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field…

2016

Increased atmospheric CO2 concentration is leading to changes in the carbonate chemistry and the temperature of the ocean. The impact of these processes on marine organisms will depend on their ability to cope with those changes, particularly the maintenance of calcium carbonate structures. Both a laboratory experiment (long-term exposure to decreased pH and increased temperature) and collections of individuals from natural environments characterized by low pH levels (individuals from intertidal pools and around a CO2 seep) were here coupled to comprehensively study the impact of near-future conditions of pH and temperature on the mechanical properties of the skeleton of the euechinoid sea …

Ocean Acidification International Coordination Centre (OA-ICC)IdentificationSalinityTemperateinorganicAlkalinityAreaExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateMesocosm or benthocosmAlkalinity totaltotalYoung s moduluspHNorth AtlanticTemperatureProportiondissolvedCarbonate ionLaboratory experimentPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Earth System ResearchField observationThicknessEchinodermataCalcite saturation stateLengthwaterYoung's modulusGrowth MorphologyBenthosReplicateDiameterHardnessOther studied parameter or processOcean Acidification International Coordination Centre OA ICCAnimaliaBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)ForceSpeciesHeightTest setCarbonate system computation flagFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonTreatmentPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideParacentrotus lividusGrowth/MorphologySingle speciesBenthic animalsFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelfSecond moment of area
researchProduct