Search results for " dynamical systems"
showing 10 items of 165 documents
Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations
2014
Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singular values of the fundamental matrix of linearized system (Lyapunov exponents, LEs). In this work the relation between Lyapunov exponents and Lyapunov characteristic exponents is discussed. The invariance…
Variable length Markov chains and dynamical sources
2010
Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the ``comb'' and the ``bamboo blossom'', we find a necessary and sufficient condition for the existence and the unicity of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the gener…
Robust control of uncertain multi-inventory systems via linear matrix inequality
2008
We consider a continuous time linear multi inventory system with unknown demands bounded within ellipsoids and controls bounded within ellipsoids or polytopes. We address the problem of "-stabilizing the inventory since this implies some reduction of the inventory costs. The main results are certain conditions under which "-stabilizability is possible through a saturated linear state feedback control. All the results are based on a Linear Matrix Inequalities (LMIs) approach and on some recent techniques for the modeling and analysis of polytopic systems with saturations.
The structure of the moduli spaces of toric dynamical systems
2023
We consider complex-balanced mass-action systems, or toric dynamical systems. They are remarkably stable polynomial dynamical systems arising from reaction networks seen as Euclidean embedded graphs. We study the moduli spaces of toric dynamical systems, called the toric locus: given a reaction network, we are interested in the topological structure of the set of parameters giving rise to toric dynamical systems. First we show that the complex-balanced equilibria depend continuously on the parameter values. Using this result, we prove that the toric locus of any toric dynamical system is connected. In particular, we emphasize its product structure: it is homeomorphic to the product of the s…
Variational principles for fluid dynamics on rough paths
2022
In this paper, we introduce a new framework for parametrization schemes (PS) in GFD. Using the theory of controlled rough paths, we derive a class of rough geophysical fluid dynamics (RGFD) models as critical points of rough action functionals. These RGFD models characterize Lagrangian trajectories in fluid dynamics as geometric rough paths (GRP) on the manifold of diffeomorphic maps. Three constrained variational approaches are formulated for the derivation of these models. The first is the Clebsch formulation, in which the constraints are imposed as rough advection laws. The second is the Hamilton-Pontryagin formulation, in which the constraints are imposed as right-invariant rough vector…
Invariant distributions, Beurling transforms and tensor tomography in higher dimensions
2014
In the recent articles \cite{PSU1,PSU3}, a number of tensor tomography results were proved on two-dimensional manifolds. The purpose of this paper is to extend some of these methods to manifolds of any dimension. A central concept is the surjectivity of the adjoint of the geodesic ray transform, or equivalently the existence of certain distributions that are invariant under geodesic flow. We prove that on any Anosov manifold, one can find invariant distributions with controlled first Fourier coefficients. The proof is based on subelliptic type estimates and a Pestov identity. We present an alternative construction valid on manifolds with nonpositive curvature, based on the fact that a natur…
Counting common perpendicular arcs in negative curvature
2013
Let $D^-$ and $D^+$ be properly immersed closed locally convex subsets of a Riemannian manifold with pinched negative sectional curvature. Using mixing properties of the geodesic flow, we give an asymptotic formula as $t\to+\infty$ for the number of common perpendiculars of length at most $t$ from $D^-$ to $D^+$, counted with multiplicities, and we prove the equidistribution in the outer and inner unit normal bundles of $D^-$ and $D^+$ of the tangent vectors at the endpoints of the common perpendiculars. When the manifold is compact with exponential decay of correlations or arithmetic with finite volume, we give an error term for the asymptotic. As an application, we give an asymptotic form…
Carleman estimates for geodesic X-ray transforms
2018
In this article we introduce an approach for studying the geodesic X-ray transform and related geometric inverse problems by using Carleman estimates. The main result states that on compact negatively curved manifolds (resp. nonpositively curved simple or Anosov manifolds), the geodesic vector field satisfies a Carleman estimate with logarithmic weights (resp. linear weights) on the frequency side. As a particular consequence, on negatively curved simple manifolds the geodesic X-ray transform with attenuation given by a general connection and Higgs field is invertible modulo natural obstructions. The proof is based on showing that the Pestov energy identity for the geodesic vector field com…
The X-Ray Transform for Connections in Negative Curvature
2016
We consider integral geometry inverse problems for unitary connections and skew-Hermitian Higgs fields on manifolds with negative sectional curvature. The results apply to manifolds in any dimension, with or without boundary, and also in the presence of trapped geodesics. In the boundary case, we show injectivity of the attenuated ray transform on tensor fields with values in a Hermitian bundle (i.e. vector valued case). We also show that a connection and Higgs field on a Hermitian bundle are determined up to gauge by the knowledge of the parallel transport between boundary points along all possible geodesics. The main tools are an energy identity, the Pestov identity with a unitary connect…
Invariant Jordan curves of Sierpinski carpet rational maps
2015
In this paper, we prove that if $R\colon\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ is a postcritically finite rational map with Julia set homeomorphic to the Sierpi\'nski carpet, then there is an integer $n_0$, such that, for any $n\ge n_0$, there exists an $R^n$-invariant Jordan curve $\Gamma$ containing the postcritical set of $R$.