Search results for " effective"

showing 10 items of 380 documents

correction to ƒB

1991

Abstract The 1/m corrections to the B-meson decay constant ƒB (and the D-meson decay constant ƒD) of the heavy quark effective theory are calculated in the Green function approach. The corrections are found to be sensitive to the difference of the meson mass mB and the heavy quark mass mb. For mb=4.81 GeV we obtain a 100% correction to the heavy quark limit mb=mB. The scaling law of the ratio ƒB/ƒD is, however, quite well satisfied because of cancellations. For reasonable values of quark masses we obtain ƒ B = (130±20) MeV and ƒ D = (170±10) MeV .

Quantum chromodynamicsQuarkPhysicsNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyHeavy quark effective theoryHigh Energy Physics::ExperimentLimit (mathematics)Charm (quantum number)Exponential decayNuclear ExperimentScalingPhysics Letters B
researchProduct

Hyperfine mixing in electromagnetic decay of doubly heavy bc baryons

2010

We investigate the role of hyperfine mixing in the electromagnetic decay of ground state doubly heavy bc baryons. As in the case of a previous calculation on b -> c semileptonic decays of doubly heavy baryons, we find large corrections to the electromagnetic decay widths due to this mixing. Contrary to the weak case just mentioned, we find here that one cannot use electromagnetic width relations obtained in the infinite heavy quark mass limit to experimentally extract information on the admixtures in a model independent way.

QuarkNuclear and High Energy PhysicsParticle physicsHyperfine mixingNuclear TheoryFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)Nuclear physicsHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHeavy quark effective theoryB meson010306 general physicsNuclear ExperimentHyperfine structureNuclear theoryMixing (physics)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyFísicaDouble heavy bc baryonsBaryonHigh Energy Physics - PhenomenologyHigh Energy Physics::ExperimentGround statePhysics Letters B
researchProduct

Electromagnetic structure of few-nucleon ground states

2015

Experimental form factors of the hydrogen and helium isotopes, extracted from an up-to-date global analysis of cross sections and polarization observables measured in elastic electron scattering from these systems, are compared to predictions obtained in three different theoretical approaches: the first is based on realistic interactions and currents, including relativistic corrections (labeled as the conventional approach); the second relies on a chiral effective field theory description of the strong and electromagnetic interactions in nuclei (labeled $\chi$EFT); the third utilizes a fully relativistic treatment of nuclear dynamics as implemented in the covariant spectator theory (labeled…

QuarkNuclear and High Energy PhysicsParticle physicsNuclear TheoryNuclear TheoryDegrees of freedom (physics and chemistry)FOS: Physical sciencescharge and magnetic radiiElectromagnetic properties01 natural sciences7. Clean energychiral effective field theoryNuclear Theory (nucl-th)Momentum0103 physical sciencesEffective field theoryCovariant transformationNuclear Experiment (nucl-ex)010306 general physicsform factorsNuclear ExperimentIsotopes of heliumPhysics010308 nuclear & particles physicselectric quadrupole and magnetic dipole momentslight nucleiGluoncharge and magnetic radii; chiral effective field theory; covariant spectator theory; electric quadrupole and magnetic dipole moments; form factors; light nuclei; Nuclear and High Energy Physicscovariant spectator theoryFew-nucleon ground statesNucleonJournal of Physics G: Nuclear and Particle Physics
researchProduct

D mesic nuclei

2010

The energies and widths of several D-0 meson bound states for different nuclei are obtained using a D-meson selfenergy in the nuclear medium, which is evaluated in a selfconsistent manner using techniques of unitarized coupled-channel theory. The kernel of the meson-baryon interaction is based on a model that treats heavy pseudoscalar and heavy vector mesons on equal footing, as required by heavy quark symmetry. We find D-0 bound states in all studied nuclei, from C-12 up to Pb-208. The inclusion of vector mesons is the keystone for obtaining an attractive D-nucleus interaction that leads to the existence of D-0-nucleus bound states, as compared to previous studies based on SU(4) flavor sym…

QuarkNuclear reactionNuclear and High Energy PhysicsParticle physicsCharmNuclear TheoryMesonHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesHEAVY-ION COLLISIONS01 natural sciences7. Clean energyBOUND-STATESHigh Energy Physics - ExperimentNuclear Theory (nucl-th)Nuclear physicsENERGYHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)ANTIPROTON ANNIHILATION0103 physical sciencesBound stateHeavy quark effective theorySCATTERINGNuclear Experiment (nucl-ex)Basso continuoNuclear Experiment010306 general physicsNuclear ExperimentSUPPRESSIONPhysicsPIONIC ATOMS010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyFísicaCHIRAL DYNAMICSHeavy quark symmetryETAPseudoscalarHigh Energy Physics - PhenomenologyMesic nucleiPhysics Letters B
researchProduct

Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks

2014

We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three lattice spacings a (0.08-0.05)fm and pion masses down to 190MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read fB=186(13)MeV, fBs=224(14)MeV and fBs/fB=1.203(65). A comparison with o…

QuarkParticle physicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHadronLattice field theoryNuclear Theoryhep-latFOS: Physical sciencesLattice QCD01 natural sciencesNuclear physicsRenormalizationPionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMeson decayB mesonddc:530010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsHeavy Quark Effective Theory010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyhep-phLattice QCDHigh Energy Physics - PhenomenologyBottom quarks[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct

Semi-leptonic Decays of Heavy Flavours on a Fine Grained Lattice

1994

We present the results of a numerical calculation of semi-leptonic form factors relevant for heavy flavour meson decays into light mesons, at $\beta=6.4$ on a $24^3 \times 60$ lattice, using the Wilson action in the quenched approximation. We obtain $f^+_K(0)=0.65\pm 0.18$, $V(0)=0.95\pm 0.34$, $A_1(0)=0.63\pm 0.14 $ and $A_2(0)=0.45\pm 0.33 $. We also obtain $A_1(q^2_{max})=0.62\pm 0.09$, $V(0)/A_1(0)=1.5\pm 0.28 $ and $A_2(0)/A_1(0)=0.7\pm 0.4$. The results for $f^+_K(0)$, $V(0)$ and $A_1(0)$ are consistent with the experimental data and with previous lattice determinations with larger lattice spacings. In the case of $A_2(0)$ the errors are too large to draw any firm conclusion. We have …

QuarkPhysicsNuclear and High Energy PhysicsFirm conclusionParticle physicsMesonHigh Energy Physics - Lattice (hep-lat)FísicaFOS: Physical sciencesQuenched approximationHigh Energy Physics - PhenomenologyHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)Heavy quark effective theoryB meson
researchProduct

New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ.

2015

We critically review the assumption that no new physics is acting in tree-level B-meson decays and study the consequences for the ultimate precision in the direct determination of the Cabibbo-Kobayashi-Maskawa (CKM) angle γ. In our exploratory study we find that sizeable universal new physics contributions, ΔC1,2, to the tree-level Wilson coefficients C1,2 of the effective Hamiltonian describing weak decays of the b quark are currently not excluded by experimental data. In particular, we find that ImΔC1 and ImΔC2 can easily be of order ±10% without violating any constraints from data. Such a size of new physics effects in C1 and C2 corresponds to an intrinsic uncertainty in the CKM angle γ …

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsCabibbo–Kobayashi–Maskawa matrixPhysics beyond the Standard ModelHigh Energy Physics::PhenomenologyObservableBottom quarksymbols.namesakesymbolsHeavy quark effective theoryHigh Energy Physics::ExperimentHamiltonian (quantum mechanics)
researchProduct

Lattice-constrained parametrizations of form factors for semileptonic and rare radiative B decays

1997

We describe the form factors for B to rho lepton neutrino and B to K* gamma decays with just two parameters and the two form factors for B to pi lepton neutrino with a further two or three parameters. The parametrizations are consistent with heavy quark symmetry, kinematic constraints and lattice results, which we use to determine the parameters. In addition, we test versions of the parametrizations consistent (or not) with light-cone sum rule scaling relations at q^2=0.

QuarkPhysicsNuclear and High Energy PhysicsParticle physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyhep-latLattice QCD calculationFOS: Physical sciencesFísicaAtomic and Molecular Physics and OpticsSemileptonic and rare radiative decays of B mesonsHigh Energy Physics - LatticeDetermination of Cabibbo-Kobayashi-Maskawa matrix elementsLattice (order)Radiative transferHigh Energy Physics::ExperimentSum rule in quantum mechanicsNeutrinoScalingHeavy quark effective theoryTwo-formLepton
researchProduct

Renormalization of the effective theory for heavy quarks at small velocity

1995

The slope of the Isgur-Wise function at the normalization point, $\xi^{(1)}(1)$,is one of the basic parameters for the extraction of the $CKM$ matrix element $V_{cb}$ from exclusive semileptonic decay data. A method for measuring this parameter on the lattice is the effective theory for heavy quarks at small velocity $v$. This theory is a variant of the heavy quark effective theory in which the motion of the quark is treated as a perturbation. In this work we study the lattice renormalization of the slow heavy quark effective theory. We show that the renormalization of $\xi^{(1)}(1)$ is not affected by ultraviolet power divergences, implying no need of difficult non-perturbative subtraction…

QuarkSemileptonic decayPhysicsNuclear and High Energy Physicsheavy quark effective theory; small quark velocities; renormalizationComputationHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyHigh Energy Physics - Lattice (hep-lat)Perturbation (astronomy)FísicaFOS: Physical sciencesRenormalizationHigh Energy Physics - LatticeLattice (order)Effective field theoryHeavy quark effective theoryMathematical physics
researchProduct

Heavy quark symmetry constraints on semileptonic form factors and decay widths of doubly heavy baryons

2007

We show how heavy quark symmetry constraints on doubly heavy baryon semileptonic decay widths can be used to test the validity of different quark model calculations. The large discrepancies in the results observed between different quark model approaches can be understood in terms of a severe violation of heavy quark spin symmetry constraints by some of those models.

QuarkSemileptonic decayPhysicsParticle physicsNuclear and High Energy PhysicsNuclear TheoryHigh Energy Physics::LatticeNuclear TheoryHigh Energy Physics::PhenomenologyQuark modelFOS: Physical sciencesFísicaSymmetry (physics)Nuclear Theory (nucl-th)BaryonHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Heavy quark effective theoryHigh Energy Physics::ExperimentSpin symmetryNuclear ExperimentNuclear theoryPhysics Letters B
researchProduct