Search results for " electrodes"

showing 10 items of 72 documents

Ni alloy nanowires as high efficiency electrode materials for alkaline electrolysers

2021

Abstract The fabrication and characterization of nickel-alloy electrodes for alkaline electrolysers is reported. Three different alloys (Ni–Co, Ni–Zn and Ni–W) at different composition were studied in order to determine the optimum condition. Nanostructured electrodes were obtained by template electrodeposition into a nanoporous membrane, starting from aqueous solution containing the two elements of the alloy at different concentrations. Composition of alloys can be tuned by electrolyte composition and also depends on the difference of the redox potential of elements and on the presence of complexing agents in deposition bath. Electrochemical and electrocatalytic tests, aimed at establishin…

Materials scienceFabricationAlloyNanowireEnergy Engineering and Power Technology02 engineering and technologyengineering.material010402 general chemistryElectrochemistry01 natural sciencesRedoxchemistry.chemical_compoundSettore ING-IND/17 - Impianti Industriali MeccaniciAlkaline electrolyzer Nanostructured electrodes Ni–Co Alloy Template electrosynthesisPotassium hydroxideAqueous solutionRenewable Energy Sustainability and the Environmenttechnology industry and agricultureequipment and supplies021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSettore ING-IND/23 - Chimica Fisica ApplicataFuel TechnologyChemical engineeringchemistryElectrodeengineering0210 nano-technologyInternational Journal of Hydrogen Energy
researchProduct

Nanostructured Ni–Co alloy electrodes for both hydrogen and oxygen evolution reaction in alkaline electrolyzer

2021

Abstract Ni–Co alloy nanostructured electrodes with high surface area were investigated both as a cathode and anode for an alkaline electrolyzer. Electrodes were obtained by template electrosynthesis at room temperature. The electrolyte composition was tuned in order to obtain different NiCo alloys. The chemical and morphological features of nanostructured electrodes were evaluated by EDS, XRD and SEM analyses. Results show that electrodes with different composition of Ni and Co, made of nanowires well anchored to the substrate, were obtained. For both hydrogen and oxygen evolution reactions, electrochemical and electrocatalytic tests, performed in 30% w/w KOH aqueous solution, were carried…

Materials scienceHydrogenEnergy Engineering and Power Technologychemistry.chemical_element02 engineering and technology010402 general chemistryElectrosynthesisElectrochemistry01 natural sciencesSettore ING-INF/01 - Elettronicalaw.inventionlawSettore ING-IND/17 - Impianti Industriali MeccaniciTafel equationElectrolysisRenewable Energy Sustainability and the EnvironmentAlkaline water electrolysisOxygen evolution021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAnodeFuel TechnologySettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistry0210 nano-technologyAlkaline electrolyzer HER Nanostructured electrodes Ni–Co Alloy OER Template electrosynthesis
researchProduct

Reagent free electrochemical-based detection of silver ions at interdigitated microelectrodes using in-situ pH control

2021

Abstract Herein we report on the development of an electrochemical sensor for silver ions detection in tap water using anodic sweep voltammetry with in-situ pH control; enabled by closely spaced interdigitated electrode arrays. The in-situ pH control approach allowed the pH of a test solution to be tailored to pH 3 (experimentally determined as the optimal pH) by applying 1.65 V to a protonator electrode with the subsequent production of protons, arising from water electrolysis, dropping the local pH value. Using this approach, an initial proof-of-concept study for silver detection in sodium acetate was undertaken where 1.25 V was applied during deposition (to compensate for oxygen producti…

Materials scienceInorganic chemistry02 engineering and technologyElectrolyte010402 general chemistryElectrochemistry01 natural sciencesChlorideTap waterMaterials ChemistrymedicineInterdigitated gold microband electrodes Local pH control Silver ions Square wave voltammetry Tap waterElectrical and Electronic EngineeringInstrumentationVoltammetryDetection limitElectrolysis of waterMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsElectrochemical gas sensorSettore ING-IND/23 - Chimica Fisica Applicata0210 nano-technologymedicine.drugSensors and Actuators B: Chemical
researchProduct

Laser irradiation of ZnO:Al/Ag/ZnO:Al multilayers for electrical isolation in thin film photovoltaics

2013

Laser irradiation of ZnO:Al/Ag/ZnO:Al transparent contacts is investigated for segmentation purposes. The quality of the irradiated areas has been experimentally evaluated by separation resistance measurements, and the results are complemented with a thermal model used for numerical simulations of the laser process. The presence of the Ag interlayer plays two key effects on the laser scribing process by increasing the maximum temperature reached in the structure and accelerating the cool down process. These evidences can promote the use of ultra-thin ZnO:Al/ Ag/ZnO:Al electrode in large-area products, such as for solar modules. © 2013 Crupi et al.; licensee Springer.

Materials scienceTransparent electrodesThin film photovoltaicNanochemistryNanotechnologyTransparent electrode AluminumSettore ING-INF/01 - ElettronicaSettore FIS/03 - Fisica Della Materialaw.inventionElectrical isolationIrradiated areaMaterials Science(all)PhotovoltaicslawTransparent electrodes ; Multilayers; Pulsed laser scribingMultilayerGeneral Materials ScienceIrradiationThin filmLaser scribingNano Expressbusiness.industryMaximum temperaturePulsed laser scribingCondensed Matter PhysicsLaserThin film photovoltaicsMultilayersElectrical isolationElectrodeOptoelectronicsResistance measurementLaser scribing proceZinc oxide Film preparationbusinessLaser scribing
researchProduct

Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering

2019

Selective laser sintering (SLS) 3D printing was utilized to fabricate highly porous carbonous electrodes. The electrodes were prepared by using a mixture of fine graphite powder and either polyamide-12, polystyrene, or polyurethane polymer powder as SLS printing material. During the printing process the graphite powder was dispersed uniformly on the supporting polymer matrix. Graphite’s concentration in the mixture was varied between 5 and 40 wt % to find the correlation between the carbon content and conductivity. The graphite concentration, polymer matrix, and printing conditions all had an impact on the final conductivity. Due to the SLS printing technique, all the 3D printed electrodes …

Materials sciencelaser sinteringelektroditEnergy Engineering and Power Technology3D printing02 engineering and technologyConductivity010402 general chemistry01 natural scienceslaw.inventionlawHighly porousgrafiittiMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)3D-tulostusGraphiteElectrical and Electronic EngineeringComposite materialta116ta114business.industrygraphite3D printingporous electrodes021001 nanoscience & nanotechnology0104 chemical sciencesSelective laser sinteringPorous electrodeElectrodePolyamideconductivity0210 nano-technologybusinessACS Applied Energy Materials
researchProduct

ChemInform Abstract: Metal- and Reagent-Free Highly Selective Anodic Cross-Coupling Reaction of Phenols.

2014

Boron-doped diamond electrodes allow the direct anodic cross-coupling of phenols in hexafluoroisopropanol without using leaving functions or protecting groups.

Metalchemistry.chemical_compoundchemistryvisual_artReagentInorganic chemistryvisual_art.visual_art_mediumGeneral MedicinePhenolsDiamond electrodesHighly selectiveCoupling reactionAnodeChemInform
researchProduct

Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

2015

Graphene-based electrodes are very promising for molecular electronics and spintronics. Here we report a systematic characterization of the electroburning (EB) process, leading to the formation of nanometer-spaced gaps, on different types of few-layer graphene (namely mechanically exfoliated graphene on SiO2, graphene epitaxially grown on the C-face of SiC and turbostratic graphene discs deposited on SiO2) under air and vacuum conditions. The EB process is found to depend on both the graphene type and on the ambient conditions. For the mechanically exfoliated graphene, performing EB under vacuum leads to a higher yield of nanometer-gap formation than working in air. Conversely, for graphene…

Molecular spintronicsmolecular spintronicsMaterials sciencemolecular electronicsMolecular electronicsGeneral Physics and AstronomyNanotechnologylcsh:Chemical technologyEpitaxyGraphene based electrodeslcsh:TechnologyFull Research PaperGraphene; Graphene based electrodes; Molecular electronics; Molecular spintronics; Materials Science (all); Electrical and Electronic Engineering; Physics and Astronomy (all)law.inventionPhysics and Astronomy (all)lawNanotechnologylcsh:TP1-1185ddc:530General Materials ScienceElectrical and Electronic Engineeringlcsh:ScienceComputingMilieux_MISCELLANEOUSGraphene oxide paper[PHYS]Physics [physics]lcsh:TGraphenegraphene based electrodesPhysicsGraphene foamMolecular electronicslcsh:QC1-999NanoscienceElectrodelcsh:QMaterials Science (all)GrapheneBilayer graphenelcsh:PhysicsGraphene nanoribbons
researchProduct

High-rate cycling performance of lead-acid batteries with nanostructured electrodes

2021

In this work we present lead-acid batteries with nanostructured electrodes cycled with different C-rate from 1C (1 hour to complete charge) up to 30C (120 seconds to complete charge) and imposing a very deep discharge. In comparison to the parameters usually used for commercial batteries, these are much more stressful conditions in terms of cut-off and charge/discharge rate.

Nanostructured ElectrodesHigh C-rate cyclingState of chargeNano TechnologyLead-Acid Battery
researchProduct

Fabrication of Nanostructured Ni and Ni-IrO2 electrodes for wateralkaline electrolyzer

2016

In the field of water-alkaline electrolyzer, the develop of nanoporous nickel electrodes with low cost and high electrocatalysis efficiency is one of the potential approaches to increase their performance [1]. To obtain nanostructured electrodes, a facile approach is that of template electrosynthesis. With this method we have obtained electrodes made of nanowires of Ni that have a very high surface area. These electrode were obtained by a two-step procedure allowing to obtain an ordered array of Ni nanowires that completely covering the surface of current collector made of the same material. Besides, by amperostatic deposition we have covered these electrode with nanoparticles of IrO2 elect…

Nanostructures Ni Ni-IrO2 electrodes water alkaline electrolyzerSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

Highly selective detection of Epinephrine at oxidized Single-Wall Carbon Nanohorns modified Screen Printed Electrodes (SPEs)

2014

Oxidized Single-Wall Carbon Nanohorns (o-SWCNHs) were used, for the first time, to assemble chemically modified Screen Printed Electrodes (SPEs) selective towards the electrochemical detection of Epinephrine (Ep), in the presence of Serotonine-5-HT (S-5HT), Dopamine (DA), Nor-Epineprhine (Nor-Ep), Ascorbic Acid (AA), Acetaminophen (Ac) and Uric Acid (UA). The Ep neurotransmitter was detected by using Differential Pulse Voltammetry (DPV), in a wide linear range of concentration (2-2500 μM) with high sensitivity (55.77 A M(-1) cm(-2)), very good reproducibility (RSD% ranging from 2 to 10 for different SPEs), short response time for each measurement (only 2s) and low detection of limit (LOD=0.…

Neurotransmitters; Screen Printed Electrodes (SPEs); Selective detection; SWCNHs; Biosensing Techniques; Electrochemical Techniques; Electrodes; Epinephrine; Limit of Detection; Nanostructures; Oxidation-Reduction; Reproducibility of Results; Biophysics; Biomedical Engineering; Biotechnology; Electrochemistry; Medicine (all)NanostructureEpinephrineScreen Printed Electrodes (SPEs)ElectrodeBiophysicsAnalytical chemistryBiomedical EngineeringReproducibility of ResultBiosensing TechniquesElectrochemistryNanomaterialsSWCNHs; Screen Printed Electrodes (SPEs); Neurotransmitters; Selective detectionBiosensing TechniqueSelective detectionLimit of DetectionElectrochemistrySWCNHSettore CHIM/01 - Chimica AnaliticaNeurotransmitterElectrodesDetection limitSWCNHsReproducibilityElectrochemical TechniqueChemistryMedicine (all)Reproducibility of ResultsGeneral MedicineElectrochemical TechniquesNeurotransmittersAscorbic acidNanostructuresLinear rangeBiophysicElectrodeDifferential pulse voltammetryOxidation-ReductionNuclear chemistryBiotechnology
researchProduct