Search results for " electromagnetic"

showing 10 items of 102 documents

Symmetries and Covariance of the Maxwell Equations

2012

Already within a given, fixed division of four-dimensional spacetime into the space where experiments are performed, and the laboratory time variable, Maxwell’s equations show interesting transformation properties under continuous and discrete space-time transformations. However, only the action of the whole Lorentz group on them reveals their full symmetry structure. A good example that illustrates the covariance of Maxwell’s equations is provided by the electromagnetic fields of a point charge uniformly moving along a straight line.

Lorentz groupElectromagnetic fieldPhysicssymbols.namesakeMathematical optimizationClassical mechanicsSpacetimeMaxwell's equationssymbolsInhomogeneous electromagnetic wave equationMaxwell relationsLorentz forceAction (physics)
researchProduct

Dysfunction of attention switching networks in amyotrophic lateral sclerosis

2019

Objective To localise and characterise changes in cognitive networks in Amyotrophic Lateral Sclerosis (ALS) using source analysis of mismatch negativity (MMN) waveforms. Rationale The MMN waveform has an increased average delay in ALS. MMN has been attributed to change detection and involuntary attention switching. This therefore indicates pathological impairment of the neural network components which generate these functions. Source localisation can mitigate the poor spatial resolution of sensor-level EEG analysis by associating the sensor-level signals to the contributing brain sources. The functional activity in each generating source can therefore be individually measured and investigat…

MaleMismatch negativitySource localisationEEG ElectroencephalographyMismatch negativityNetworkElectroencephalographylcsh:RC346-429PET Positron emission tomographyCognition0302 clinical medicineC9orf72AttentionEEGAUROC Area under receiver operating characteristic curveAmyotrophic lateral sclerosisAged 80 and overmedicine.diagnostic_test05 social sciencesCognitive flexibilityBrainRegular ArticleElectroencephalographyCognitionMiddle AgedSTG Superior temporal gyrusNeurologyMTG Mid temporal gyrusDLPFC Dorsolateral prefrontal cortexlcsh:R858-859.7FemaleLCMV Linearly constrained minimum varianceIFG Inferior frontal gyrusAdultCognitive Neurosciencelcsh:Computer applications to medicine. Medical informatics050105 experimental psychologyCWIT Colour-word interference test03 medical and health sciencesfMRI Functional magnetic resonance imagingMEG MagnetoencephalographymedicineMMN Mismatch negativityHumans0501 psychology and cognitive sciencesRadiology Nuclear Medicine and imagingLS Amyotrophic Lateral SclerosisAAL Automated Anatomical Labellinglcsh:Neurology. Diseases of the nervous systemAEP Auditory evoked potentialAgedbusiness.industryAmyotrophic Lateral SclerosisIQR Interquartile rangeNeurophysiologyqEEG Quantitative EEGmedicine.diseaseNeurology (clinical)Nerve NetFunctional magnetic resonance imagingbusinessNeuroscience030217 neurology & neurosurgeryeLORETA Exact low-resolution brain electromagnetic tomographyNeuroImage: Clinical
researchProduct

Characterization of Different Cable Ferrite Materials to Reduce the Electromagnetic Noise in the 2–150 kHz Frequency Range

2018

The gap of standardization for conducted and field coupled electromagnetic interferences (EMI) in the 2–150 kHz frequency range can lead to Electromagnetic Compatibility (EMC) problems. This is caused by power systems such as Pulse Width Modulation (PWM) controlled rectifiers, photovoltaic inverters or charging battery units in electric vehicles. This is a very important frequency spectral due to interferences generated in a wide range of devices and, specifically, communication problems in the new technologies and devices incorporated to the traditional grid to convert it into a Smart Grid. Consequently, it is necessary to provide new solutions to attenuate this kind of interference, which…

Materials scienceAcoustics02 engineering and technology01 natural scienceslcsh:TechnologyArticlelow frequency emissionsElectric power systeminsertion lossEMI0103 physical sciencescable ferriteInsertion lossGeneral Materials Sciencelcsh:MicroscopyElectrical impedancelcsh:QC120-168.85010302 applied physicscable ferrite; electromagnetic interferences; low frequency emissions; nanocrystalline; relative permeability; insertion losselectromagnetic interferenceslcsh:QH201-278.5lcsh:TPhotovoltaic systemElectromagnetic compatibilityrelative permeability021001 nanoscience & nanotechnologylcsh:TA1-2040Ferrite (magnet)lcsh:Descriptive and experimental mechanicsnanocrystallinelcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Pulse-width modulationMaterials; Volume 11; Issue 2; Pages: 174
researchProduct

Transmission properties at microwave frequencies of two-dimensional metallic lattices

1999

The transmission properties of different metallic photonic lattices (square and rectangular) have been experimentally studied. A numerical algorithm based on time domain finite differences has been used for simulating these photonic structures. The introduction of defects in the two-dimensional metallic lattice modifies its transmission spectrum. If metal rods are eliminated from (or added to) the lattice, extremely narrow peaks are observed at some particular frequencies below (or above) the band pass edge. Vicente.Such@uv.es ; Enrique.Navarro@uv.es

Materials scienceCondensed matter physicsbusiness.industryUNESCO::FÍSICAFinite difference methodMetals ; Photonic band gap ; Electromagnetic wave transmission ; Microwave spectra ; Finite difference time-domain analysisGeneral Physics and AstronomyFinite difference time-domain analysisPhotonic band gapRodMicrowave spectraBand-pass filterMetals:FÍSICA [UNESCO]Lattice (order)Time domainElectromagnetic wave transmissionPhotonicsbusinessMicrowavePhotonic crystalJournal of Applied Physics
researchProduct

Transmission Attenuation Power Ratio Analysis of Flexible Electromagnetic Absorber Sheets Combined with a Metal Layer.

2018

Electromagnetic noise absorber sheets have become a solution for solving complex electromagnetic interference (EMI) problems due to their high magnetic losses. This contribution is focused on characterizing a novel structure that is based on an absorber film with a metal layer attached on its top side. Two different absorber compositions were combined with Al and Cu metal layers in order to study the improvement on the performance of these structures, depending on the complex permeability, absorber film thickness, and type of metal. The transmission attenuation power ratio of the absorber films is analyzed and compared to the performance of absorber and metal structures. The measurement pro…

Materials scienceTest fixture02 engineering and technologycomplex permeability01 natural scienceslcsh:TechnologyElectromagnetic interferenceMicrostripArticlelaw.inventioninsertion losslawTransmission line0103 physical sciences0202 electrical engineering electronic engineering information engineeringEddy currentInsertion lossGeneral Materials Sciencemicrostrip lineflexible electromagnetic absorber sheetlcsh:Microscopylcsh:QC120-168.85010302 applied physicslcsh:QH201-278.5power absorptionbusiness.industrylcsh:TAttenuation020206 networking & telecommunicationselectromagnetic interferenceMagnetic fieldlcsh:TA1-2040Optoelectronicsmagnetic materialslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials (Basel, Switzerland)
researchProduct

Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms

1999

SUMMARY A multiobjective multidisciplinary design optimization (MDO) of two-dimensional airfoil is presented. In this paper, an approximation for the Pareto set of optimal solutions is obtained by using a genetic algorithm (GA). The first objective function is the drag coefficient. As a constraint it is required that the lift coefficient is above a given value. The CFD analysis solver is based on the finite volume discretization of the inviscid Euler equations. The second objective function is equivalent to the integral of the transverse magnetic radar cross section (RCS) over a given sector. The computational electromagnetics (CEM) wave field analysis requires the solution of a two-dimensi…

Mathematical optimizationElectromagneticsHelmholtz equationFictitious domain methodApplied MathematicsMechanical EngineeringMultidisciplinary design optimizationComputational MechanicsSolverComputer Science ApplicationsEuler equationssymbols.namesakeMechanics of MaterialssymbolsComputational electromagneticsShape optimizationMathematicsInternational Journal for Numerical Methods in Fluids
researchProduct

Improvement of matrix solutions of generalized nonlinear wave equation

2005

Four classes of nonlinear wave equations are joined in one generalized nonlinear wave equation. A theorem is proved that the whole series of matrix functions satisfy the generalized wave equation. A justification of rotational properties of matrix solutions is given and a mathematical model of the ring vortex around the acute edge is proposed using of matrix solutions.

Matrix difference equationMatrix (mathematics)Matrix differential equationGeneralized eigenvectorApplied MathematicsMatrix functionMathematical analysisComputational MechanicsSymmetric matrixSinusoidal plane-wave solutions of the electromagnetic wave equationMass matrixMathematicsZAMM
researchProduct

Production of mass-separated Erbium-169 towards the first preclinical in vitro investigations

2021

The β−-particle-emitting erbium-169 is a potential radionuclide toward therapy of metastasized cancer diseases. It can be produced in nuclear research reactors, irradiating isotopically-enriched 168Er2O3. This path, however, is not suitable for receptor-targeted radionuclide therapy, where high specific molar activities are required. In this study, an electromagnetic isotope separation technique was applied after neutron irradiation to boost the specific activity by separating 169Er from 168Er targets. The separation efficiency increased up to 0.5% using resonant laser ionization. A subsequent chemical purification process was developed as well as activity standardization of the radionuclid…

Medicine (General)Health Physics and Radiation Effectselectromagnetic isotope separationEr-169030218 nuclear medicine & medical imagingIsotope separationlaw.invention03 medical and health sciencesR5-9200302 clinical medicineErbium-169lawLASER RESONANCE IONIZATIONIonizationEr-169; activity standardization; electromagnetic isotope separation; in vitro studies; lanthanide-separation; laser resonance ionizationNeutron irradiationOriginal Researchin vitro studiesRadionuclideChemistryRadiochemistryGeneral MedicineLANTHANIDE-SEPARATIONIn vitroELECTROMAGNETIC ISOTOPE SEPARATIONER-169030220 oncology & carcinogenesisRadionuclide therapyMedicinelanthanide-separationactivity standardizationSpecific activitylaser resonance ionizationACTIVITY STANDARDIZATIONIN VITRO STUDIESFrontiers in Medicine
researchProduct

Optical-Microwave Sensor for Real-Time Measurement of Water Contamination in Oil Derivatives  

2023

This paper presents a novel microwave sensor using optical activation for measuring in real-time the water contamination in crude oil or its derivatives. The sensor is constructed from an end-coupled microstrip resonator that is interconnected to two pairs of identical fractal structures based on Moore curves. Electromagnetic (EM) interaction between the fractal curves is mitigated using a T-shaped microstrip-stub to enhance the performance of the sensor. The gap in one pair of fractal curves is loaded with light dependent resistors (LDR) and the other pair with microwave chip capacitors. The chip capacitors were used to increase the EM coupling between the fractal gaps to realize a high Q-…

Microstrip sensor electromagnetic (EM) spectrum fractal curves Light dependent resistors (LDR)Settore ING-INF/01 - Elettronica
researchProduct

On global solutions of the Maxwell-Dirac equations

1987

We prove, for the Maxwell-Dirac equations in 1+3 dimensions, that modified wave operators exist on a domain of small entire test functions of exponential type and that the Cauchy problem, inR+×R3, has a unique solution for each initial condition (att=0) which is in the image of the wave operator. The modification of the wave operator, which eliminates infrared divergences, is given by approximate solutions of the Hamilton-Jacobi equation, for a relativistic electron in an electromagnetic potential. The modified wave operator linearizes the Maxwell-Dirac equations to their linear part.

Momentum operatorElectromagnetic wave equationMathematical analysisStatistical and Nonlinear PhysicsInhomogeneous electromagnetic wave equationd'Alembert's formula35Q20Operator (computer programming)35L45Initial value problemD'Alembert operatorHyperbolic partial differential equation35P25Mathematical Physics81D25MathematicsCommunications in Mathematical Physics
researchProduct