Search results for " finite automata"

showing 10 items of 76 documents

Implications of quantum automata for contextuality

2014

We construct zero error quantum finite automata (QFAs) for promise problems which cannot be solved by bounded error probabilistic finite automata (PFAs). Here is a summary of our results: There is a promise problem solvable by an exact two way QFA in exponential expected time but not by any bounded error sublogarithmic space probabilistic Turing machine (PTM). There is a promise problem solvable by an exact two way QFA in quadratic expected time but not by any bounded error o(loglogn) space PTMs in polynomial expected time. The same problem can be solvable by a one way Las Vegas (or exact two way) QFA with quantum head in linear (expected) time. There is a promise problem solvable by a Las …

Discrete mathematicsProbabilistic finite automataTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESQuantum automata0102 computer and information sciencesConstruct (python library)Nonlinear Sciences::Cellular Automata and Lattice Gases01 natural sciencesKochen–Specker theoremTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics0103 physical sciencesQuantum finite automataPromise problem010306 general physicsComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Quantum Finite State Transducers

2001

We introduce quantum finite state transducers (qfst), and study the class of relations which they compute. It turns out that they share many features with probabilistic finite state transducers, especially regarding undecidability of emptiness (at least for low probability of success). However, like their 'little brothers', the quantum finite automata, the power of qfst is incomparable to that of their probabilistic counterpart. This we show by discussing a number of characteristic examples.

Discrete mathematicsPure mathematicsFinite-state machineDeterministic finite automatonComputer scienceComputer Science::Logic in Computer ScienceProbabilistic logicQuantum finite automataNondeterministic finite automatonState diagramQuantumComputer Science::Formal Languages and Automata TheoryQuantum computer
researchProduct

Improved constructions of quantum automata

2008

We present a simple construction of quantum automata which achieve an exponential advantage over classical finite automata. Our automata use \frac{4}{\epsilon} \log 2p + O(1) states to recognize a language that requires p states classically. The construction is both substantially simpler and achieves a better constant in the front of \log p than the previously known construction of Ambainis and Freivalds (quant-ph/9802062). Similarly to Ambainis and Freivalds, our construction is by a probabilistic argument. We consider the possibility to derandomize it and present some results in this direction.

Discrete mathematicsQuantum PhysicsFinite-state machineTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESGeneral Computer ScienceFOS: Physical sciencesω-automatonComputer Science::Computational ComplexityNonlinear Sciences::Cellular Automata and Lattice GasesMobile automatonTheoretical Computer ScienceQuantum finite automataQuantum computationAutomata theoryQuantum finite automataNondeterministic finite automatonExponential advantageQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata TheoryMathematicsQuantum computerQuantum cellular automatonComputer Science(all)
researchProduct

Improved constructions of mixed state quantum automata

2009

Quantum finite automata with mixed states are proved to be super-exponentially more concise rather than quantum finite automata with pure states. It was proved earlier by A. Ambainis and R. Freivalds that quantum finite automata with pure states can have an exponentially smaller number of states than deterministic finite automata recognizing the same language. There was an unpublished ''folk theorem'' proving that quantum finite automata with mixed states are no more super-exponentially more concise than deterministic finite automata. It was not known whether the super-exponential advantage of quantum automata is really achievable. We prove that there is an infinite sequence of distinct int…

Discrete mathematicsQuantum algorithmsNested wordPermutation groupsGeneral Computer Scienceω-automatonTheoretical Computer ScienceCombinatoricsDeterministic finite automatonDFA minimizationDeterministic automatonQuantum finite automataAutomata theoryNondeterministic finite automatonFinite automataComputer Science::Formal Languages and Automata TheoryMathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Probabilities to Accept Languages by Quantum Finite Automata

1999

We construct a hierarchy of regular languages such that the current language in the hierarchy can be accepted by 1-way quantum finite automata with a probability smaller than the corresponding probability for the preceding language in the hierarchy. These probabilities converge to 1/2.

Discrete mathematicsTheoretical computer scienceNested wordFinite-state machineHierarchy (mathematics)Computer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Turing machinesymbols.namesakeNonlinear Sciences::Exactly Solvable and Integrable SystemsRegular languageProbabilistic automatonAnalytical hierarchysymbolsComputer Science::Programming LanguagesQuantum finite automataQuantum algorithmNondeterministic finite automaton
researchProduct

Finite State Transducers with Intuition

2010

Finite automata that take advice have been studied from the point of view of what is the amount of advice needed to recognize nonregular languages. It turns out that there can be at least two different types of advice. In this paper we concentrate on cases when the given advice contains zero information about the input word and the language to be recognized. Nonetheless some nonregular languages can be recognized in this way. The help-word is merely a sufficiently long word with nearly maximum Kolmogorov complexity. Moreover, any sufficiently long word with nearly maximum Kolmogorov complexity can serve as a help-word. Finite automata with such help can recognize languages not recognizable …

Discrete mathematicsTheoretical computer scienceNested wordKolmogorov complexityComputer scienceComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Nondeterministic algorithmTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDeterministic finite automatonKolmogorov structure functionProbabilistic automatonQuantum finite automataNondeterministic finite automatonComputer Science::Formal Languages and Automata Theory
researchProduct

Standard Sturmian words and automata minimization algorithms

2015

The study of some close connections between the combinatorial properties of words and the performance of the automata minimization process constitutes the main focus of this paper. These relationships have been, in fact, the basis of the study of the tightness and the extremal cases of Hopcroft's algorithm, that is, up to now, the most efficient minimization method for deterministic finite state automata. Recently, increasing attention has been paid to another minimization method that, unlike the approach proposed by Hopcroft, is not based on refinement of the set of states of the automaton, but on automata operations such as determinization and reverse, and is also applicable to non-determ…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordFinite-state machineGeneral Computer ScienceAutomata minimizationComputer Science (all)ω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesStandard Sturmian wordTheoretical Computer ScienceAutomatonCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationAutomata theoryQuantum finite automataBrzozowski's minimization algorithmTime complexityAlgorithmComputer Science::Formal Languages and Automata TheoryMathematicsTheoretical Computer Science
researchProduct

Group Input Machine

2009

We introduce a new type of internal memory for finite automata and real-time automata. Instead of using tapes with a prescribed Euclidean structure (one-dimensional or two-dimensional tapes) we allow arbitrary group structure of the internal memory of the automata.

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordFinite-state machineω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesTopologyAutomatonMobile automatonTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESContinuous spatial automatonAutomata theoryQuantum finite automataComputer Science::Formal Languages and Automata TheoryMathematics
researchProduct

Extremal minimality conditions on automata

2012

AbstractIn this paper we investigate the minimality problem of DFAs by varying the set of final states. In other words, we are interested on how the choice of the final states can affect the minimality of the automata. The state-pair graph is a useful tool to investigate such a problem. The choice of a set of final states for the automaton A defines a coloring of the closed components of the state-pair graph and the minimality of A corresponds to a property of these colored components. A particular attention is devoted to the analysis of some extremal cases such as, for example, the automata that are minimal for any choice of the subset of final states F from the state set Q of the automato…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESNested wordSettore INF/01 - InformaticaGeneral Computer Sciencestate-pair graph of automataminimality automataTimed automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesTheoretical Computer ScienceMobile automatonCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationContinuous spatial automatonAutomata theoryQuantum finite automataComputer Science::Formal Languages and Automata TheoryComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Automata with Extremal Minimality Conditions

2010

It is well known that the minimality of a deterministic finite automaton (DFA) depends on the set of final states. In this paper we study the minimality of a strongly connected DFA by varying the set of final states. We consider, in particular, some extremal cases. A strongly connected DFA is called uniformly minimal if it is minimal, for any choice of the set of final states. It is called never-minimal if it is not minimal, for any choice of the set of final states. We show that there exists an infinite family of uniformly minimal automata and that there exists an infinite family of never-minimal automata. Some properties of these automata are investigated and, in particular, we consider t…

Discrete mathematicsTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESPowerset constructionBüchi automatonω-automatonNonlinear Sciences::Cellular Automata and Lattice GasesCombinatoricsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESDFA minimizationDeterministic automatonQuantum finite automataTwo-way deterministic finite automatonNondeterministic finite automatonComputer Science::Formal Languages and Automata TheoryAutomata MinimizationMathematics
researchProduct