Search results for " finite element method."
showing 10 items of 53 documents
finite element methods
2017
Two robot patch recovery methods with built-in field equations and boundary conditions superconvergence similarities in standard and mixed finite element methods on the FEM for the Navier-Stokes equations in the domains with corner singularities projections in finite element analysis and application element analysis method and superconvergence quadratic interpolation polynomials in vertices of strongly regular triangulations explicit error bounds for a nonconforming finite element method analysis of the average efficiency of an error estimator on the mesh for difference schemes of higher accuracy for the heat-conduction equation shape design sensitivity formulae approximated by means of a r…
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
2011
Abstract A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains t…
On the numerical solution of axisymmetric domain optimization problems by dual finite element method
1994
Shape optimization of an axisymmetric three-dimensional domain with an elliptic boundary value state problem is solved. Since the cost functional is given in terms of the cogradient of the solution, a dual finite element method based on the minimum of complementary energy principle is used. © 1994 John Wiley & Sons, Inc.
Guaranteed lower bounds for cost functionals of time-periodic parabolic optimization problems
2019
In this paper, a new technique is shown for deriving computable, guaranteed lower bounds of functional type (minorants) for two different cost functionals subject to a parabolic time-periodic boundary value problem. Together with previous results on upper bounds (majorants) for one of the cost functionals, both minorants and majorants lead to two-sided estimates of functional type for the optimal control problem. Both upper and lower bounds are derived for the second new cost functional subject to the same parabolic PDE-constraints, but where the target is a desired gradient. The time-periodic optimal control problems are discretized by the multiharmonic finite element method leading to lar…
The Global-Local Approach for Damage Detection in Composite Structures and Rails
2021
Structural components with waveguide geometry can be probed using guided elastic waves. Analytical solutions are prohibitive in complex geometries, especially in presence of structural discontinuities or defects. The Global-Local (GL) approach provides the solution by splitting the waveguide in “local” and “global” regions. The “local” region contains the part of the structure responsible for the complex scattering of an incident wave. What happens in this region cannot be reproduced analytically. The “global” region is regular and sufficiently far from the scatterer, in order to exploit known analytical wave propagation solutions. The proposed GL approach discretizes the local region by re…
The finite element method for fractional non-local thermal energy transfer in non-homogeneous rigid conductors
2015
Abstract In a non-local fractional-order model of thermal energy transport recently introduced by the authors, it is assumed that local and non-local contributions coexist at a given observation scale: while the first is described by the classical Fourier transport law, the second involves couples of adjacent and non-adjacent elementary volumes, and is taken as proportional to the product of the masses of the interacting volumes and their relative temperature, through a material-dependent, distance-decaying power-law function. As a result, a fractional-order heat conduction equation is derived. This paper presents a pertinent finite element method for the solution of the proposed fractional…
Finite element approximation of vector fields given by curl and divergence
1981
In this paper a finite element approximation scheme for the system curl is considered. The use of pointwise approximation of the boundary condition leads to a nonconforming method. The error estimate is proved and numerically tested.
FINITE ELEMENT RESOLUTION OF CONVECTION-DIFFUSION EQUATIONS WITH INTERIOR AND BOUNDARY LAYERS
1996
We present a new algorithm for the resolution of both interior and boundary layers present in the convection-diffusion equation in laminar regimes, based on the formulation of a family of polynomial-exponential elements. We have carried out an adaptation of the standard variational methods (finite element method and spectral element method), obtaining an algorithm which supplies non-oscillatory and accurate solutions. The algorithm consists of generating a coupled grid of polynomial standard elements and polynomial-exponential elements. The latter are able to represent the high gradients of the solution, while the standard elements represent the solution in the areas of smooth variation.
On the finite element approximation for maxwell’s problem in polynomial domains of the plane
1981
The time-harmonic Maxwell boundary value problem in polygonal domains of R2 is considered. The behaviour of the solution in the neighbourhood of nonregular boundary points is given and asymptotic error estimates in L2- and in curl-div-norm for a finite element approximation of the solution are derived
A preliminary comparison between finite element and meshless simulations of extrusion
2009
In this paper the extrusion process of a cross-shaped profile was investigated. In particular, the study was focused on the distortion of extruding profiles when the workpiece and die axis are not aligned. The process was simulated using the finite element method (FEM) and the natural element method (NEM), both implemented in an updated-Lagrangian formulation, in order to avoid the burden associated with the description of free surfaces in ALE or Eulerian formulations. Furthermore, an experimental equipment was developed in order to obtain reliable data in terms of deformed entity, required process load and calculated pressure. At the end, a comparison between the numerical predictions and …