Search results for " fixed point."

showing 10 items of 146 documents

Some common fixed point theorems for owc mappings with applications

2013

Starting from the setting of fuzzy metric spaces, we give some new common fixed point theorems for a pair of occasionally weakly compatible (owc) self-mappings satisfying a mixed contractive condition. In proving our results, we do not need to use the triangular inequality. Also we obtain analogous results for two pairs of owc self-mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement some results existing in the literature. Finally, we give some applications of our results.

Common fixed points functional equations fuzzy metric spaces occasionally weakly compatible mappings product spaceSettore MAT/05 - Analisi Matematica
researchProduct

Nonlinear quasi-contractions of Ciric type

2012

In this paper we obtain points of coincidence and common fixed points for two self mappings satisfying a nonlinear contractive condition of Ciric type. As application, using the scalarization method of Du, we deduce a result of common fixed point in cone metric spaces.

Common fixed points quasi-contractions scalarization cone metric spaces.Settore MAT/05 - Analisi Matematica
researchProduct

$varphi$-pairs and common fixed points in cone metric spaces

2008

In this paper we introduce a contractive condition, called $\varphi \textrm{-}pair$, for two mappings in the framework of cone metric spaces and we prove a theorem which assures existence and uniqueness of common fixed points for $\varphi \textrm{-}pairs$. Also we obtain a result on points of coincidence. These results extend and generalize well-known comparable results in the literature.

Cone metric spaces \and $\varphi$-pairs \and Common fixed points \and Coincidence pointsPure mathematicsGeneral MathematicsInjective metric spaceMathematical analysisFixed pointIntrinsic metricConvex metric spaceMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaMetric (mathematics)Metric mapMathematics
researchProduct

Common fixed points in cone metric spaces for CJM-pairs

2011

Abstract In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f - M K -pair mappings and f - C J M -pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.

Cone metric spaces CJM-pairs Common fixed points Common coincidence points.Injective metric spaceMathematical analysisMathematics::General TopologyFixed pointComputer Science ApplicationsIntrinsic metricConvex metric spaceCombinatoricsMetric spaceCone (topology)Settore MAT/05 - Analisi MatematicaModeling and SimulationUniquenessCoincidence pointMathematicsMathematical and Computer Modelling
researchProduct

On Boundary Conditions for Wedge Operators on Radial Sets

2008

We present a theorem about calculation of fixed point index for k-$\psi$-contractive operators with 0 < k <1 defined on a radial set of a wedge of an infinite dimensional Banach space. Then results on the existence of eigenvectors and nonzero fixed points are obtained.

Control and OptimizationRadial setMathematical analysisBanach spaceFixed-point indexMeasure of noncompactness k-$\psi$-contraction wedge relative fixed point index radial set.Fixed pointFixed-point propertyWedge (geometry)Computer Science ApplicationsSchauder fixed point theoremSettore MAT/05 - Analisi MatematicaSignal ProcessingAnalysisEigenvalues and eigenvectorsMathematicsNumerical Functional Analysis and Optimization
researchProduct

Fixed point theory for almost convex functions

1998

Traditionally, metric fixed point theory has sought classes of spaces in which a given type of mapping (nonexpansive, assymptotically or generalized nonexpansive, uniformly Lipschitz, etc.) from a nonempty weakly compact convex set into itself always has a fixed point. In some situations the class of space is determined by the application while there is some degree of freedom in constructing the map to be used. With this in mind we seek to relax the conditions on the space by considering more restrictive types of mappings.

Convex analysisLeast fixed pointPure mathematicsApplied MathematicsMathematical analysisConvex setSubderivativeAbsolutely convex setFixed pointKakutani fixed-point theoremFixed-point propertyAnalysisMathematics
researchProduct

Approximate fixed points of set-valued mapping in b-metric space

2016

We establish existence results related to approximate fixed point property of special types of set-valued contraction mappings, in the setting of b-metric spaces. As consequences of the main theorem, we give some fixed point results which generalize and extend various fixed point theorems in the existing literature. A simple example illustrates the new theory. Finally, we apply our results to establishing the existence of solution for some differential and integral problems.

Discrete mathematicsAlgebra and Number Theory010102 general mathematicsb-metric space η-contraction fixed point theorem integral inclusionFixed point01 natural sciences010101 applied mathematicsSet (abstract data type)Metric spaceSettore MAT/05 - Analisi MatematicaSettore MAT/03 - Geometria0101 mathematicsComposite materialAnalysisMathematics
researchProduct

Common Fixed points for multivalued generalized contractions on partial metric spaces

2013

We establish some common fixed point results for multivalued mappings satisfying generalized contractive conditions on a complete partial metric space. The presented theorems extend some known results to partial metric spaces. We motivate our results by some given examples and an application for finding the solution of a functional equation arising in dynamic programming.

Discrete mathematicsAlgebra and Number TheoryApplied MathematicsInjective metric spaceFubini–Study metricIntrinsic metricConvex metric spaceComputational MathematicsMetric spaceSettore MAT/05 - Analisi MatematicaMetric (mathematics)Geometry and TopologyCommon fixed point partial metric space partial Hausdorff metric weak contraction.Metric differentialAnalysisFisher information metricMathematics
researchProduct

On fixed points of the Burrows-Wheeler transform

2017

The Burrows-Wheeler Transform is a well known transformation widely used in Data Compression: important competitive compression software, such as Bzip (cf. [1]) and Szip (cf. [2]) and some indexing software, like the FM-index (cf. [3]), are deeply based on the Burrows Wheeler Transform. The main advantage of using BWT for data compression consists in its feature of "clustering" together equal characters. In this paper we show the existence of fixed points of BWT, i.e., words on which BWT has no effect. We show a characterization of the permutations associated to BWT of fixed points and we give the explicit form of fixed points on a binary ordered alphabet a, b having at most four b's and th…

Discrete mathematicsAlgebra and Number TheoryBurrows–Wheeler transformSettore INF/01 - InformaticaPermutationPermutations0102 computer and information sciences02 engineering and technologyInformation SystemFixed point01 natural sciencesTheoretical Computer ScienceComputational Theory and Mathematics010201 computation theory & mathematicsFixed PointFixed Points0202 electrical engineering electronic engineering information engineeringBurrows-Wheeler Transform; Fixed Points; Permutations; Theoretical Computer Science; Algebra and Number Theory; Information Systems; Computational Theory and Mathematics020201 artificial intelligence & image processingBurrows-Wheeler TransformInformation SystemsMathematics
researchProduct

A note on best approximation in 0-complete partial metric spaces

2014

We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.

Discrete mathematicsArticle SubjectApplied MathematicsInjective metric spacelcsh:MathematicsT-normlcsh:QA1-939Intrinsic metricConvex metric spaceUniform continuityMetric spaceFréchet spaceSettore MAT/05 - Analisi Matematica0-completeness best proximity point fixed point partial metric spaceMetric (mathematics)AnalysisMathematics
researchProduct