Search results for " fixed point."
showing 10 items of 146 documents
Some common fixed point theorems for owc mappings with applications
2013
Starting from the setting of fuzzy metric spaces, we give some new common fixed point theorems for a pair of occasionally weakly compatible (owc) self-mappings satisfying a mixed contractive condition. In proving our results, we do not need to use the triangular inequality. Also we obtain analogous results for two pairs of owc self-mappings by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement some results existing in the literature. Finally, we give some applications of our results.
Nonlinear quasi-contractions of Ciric type
2012
In this paper we obtain points of coincidence and common fixed points for two self mappings satisfying a nonlinear contractive condition of Ciric type. As application, using the scalarization method of Du, we deduce a result of common fixed point in cone metric spaces.
$varphi$-pairs and common fixed points in cone metric spaces
2008
In this paper we introduce a contractive condition, called $\varphi \textrm{-}pair$, for two mappings in the framework of cone metric spaces and we prove a theorem which assures existence and uniqueness of common fixed points for $\varphi \textrm{-}pairs$. Also we obtain a result on points of coincidence. These results extend and generalize well-known comparable results in the literature.
Common fixed points in cone metric spaces for CJM-pairs
2011
Abstract In this paper we introduce some contractive conditions of Meir–Keeler type for two mappings, called f - M K -pair mappings and f - C J M -pair (from Ciric, Jachymski, and Matkowski) mappings, in the framework of regular cone metric spaces and we prove theorems which guarantee the existence and uniqueness of common fixed points. We give also a fixed point result for a multivalued mapping that satisfies a contractive condition of Meir–Keeler type. These results extend and generalize some recent results from the literature. To conclude the paper, we extend our main result to non-regular cone metric spaces by using the scalarization method of Du.
On Boundary Conditions for Wedge Operators on Radial Sets
2008
We present a theorem about calculation of fixed point index for k-$\psi$-contractive operators with 0 < k <1 defined on a radial set of a wedge of an infinite dimensional Banach space. Then results on the existence of eigenvectors and nonzero fixed points are obtained.
Fixed point theory for almost convex functions
1998
Traditionally, metric fixed point theory has sought classes of spaces in which a given type of mapping (nonexpansive, assymptotically or generalized nonexpansive, uniformly Lipschitz, etc.) from a nonempty weakly compact convex set into itself always has a fixed point. In some situations the class of space is determined by the application while there is some degree of freedom in constructing the map to be used. With this in mind we seek to relax the conditions on the space by considering more restrictive types of mappings.
Approximate fixed points of set-valued mapping in b-metric space
2016
We establish existence results related to approximate fixed point property of special types of set-valued contraction mappings, in the setting of b-metric spaces. As consequences of the main theorem, we give some fixed point results which generalize and extend various fixed point theorems in the existing literature. A simple example illustrates the new theory. Finally, we apply our results to establishing the existence of solution for some differential and integral problems.
Common Fixed points for multivalued generalized contractions on partial metric spaces
2013
We establish some common fixed point results for multivalued mappings satisfying generalized contractive conditions on a complete partial metric space. The presented theorems extend some known results to partial metric spaces. We motivate our results by some given examples and an application for finding the solution of a functional equation arising in dynamic programming.
On fixed points of the Burrows-Wheeler transform
2017
The Burrows-Wheeler Transform is a well known transformation widely used in Data Compression: important competitive compression software, such as Bzip (cf. [1]) and Szip (cf. [2]) and some indexing software, like the FM-index (cf. [3]), are deeply based on the Burrows Wheeler Transform. The main advantage of using BWT for data compression consists in its feature of "clustering" together equal characters. In this paper we show the existence of fixed points of BWT, i.e., words on which BWT has no effect. We show a characterization of the permutations associated to BWT of fixed points and we give the explicit form of fixed points on a binary ordered alphabet a, b having at most four b's and th…
A note on best approximation in 0-complete partial metric spaces
2014
We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces. We get our results by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We introduce some new concepts and consider significant theorems to support this fact.