Search results for " forma"
showing 10 items of 3304 documents
SLC20A1 Is Involved in Urinary Tract and Urorectal Development
2020
Previous studies in developing Xenopus and zebrafish reported that the phosphate transporter slc20a1a is expressed in pronephric kidneys. The recent identification of SLC20A1 as a monoallelic candidate gene for cloacal exstrophy further suggests its involvement in the urinary tract and urorectal development. However, little is known of the functional role of SLC20A1 in urinary tract development. Here, we investigated this using morpholino oligonucleotide knockdown of the zebrafish ortholog slc20a1a. This caused kidney cysts and malformations of the cloaca. Moreover, in morphants we demonstrated dysfunctional voiding and hindgut opening defects mimicking imperforate anus in human cloacal exs…
2021
Brain homeostasis is the dynamic equilibrium whereby physiological parameters are kept actively within a specific range. The homeostatic range is not fixed and may change throughout the individual's lifespan, or may be transiently modified in the presence of severe perturbations. The endocannabinoid system has emerged as a safeguard of homeostasis, e.g., it modulates neurotransmission and protects neurons from prolonged or excessively strong activation. We used genetically engineered mouse lines that lack the cannabinoid type-1 receptor (CB1) either in dorsal telencephalic glutamatergic or in forebrain GABAergic neurons to create new allostatic states, resulting from alterations in the exci…
Anatomical characterization of the cannabinoid CB1receptor in cell-type-specific mutant mouse rescue models
2016
Type 1 cannabinoid (CB1 ) receptors are widely distributed in the brain. Their physiological roles depend on their distribution pattern, which differs remarkably among cell types. Hence, subcellular compartments with little but functionally relevant CB1 receptors can be overlooked, fostering an incomplete mapping. To overcome this, knockin mice with cell-type-specific rescue of CB1 receptors have emerged as excellent tools for investigating CB1 receptors' cell-type-specific localization and sufficient functional role with no bias. However, to know whether these rescue mice maintain endogenous CB1 receptor expression level, detailed anatomical studies are necessary. The subcellular distribut…
Brain Distribution and Modulation of Neuronal Excitability by Indicaxanthin From Opuntia Ficus Indica Administered at Nutritionally-Relevant Amounts
2018
Several studies have recently investigated the role of nutraceuticals in complex pathophysiological processes such as oxidative damages, inflammatory conditions and excitotoxicity. In this regard, the effects of nutraceuticals on basic functions of neuronal cells, such as excitability, are still poorly investigated. For this reason, the possible modulation of neuronal excitability by phytochemicals (PhC) could represent an interesting field of research given that excitotoxicity phenomena are involved in neurodegenerative alterations leading, for example, to Alzheimer's disease. The present study was focused on indicaxanthin from Opuntia ficus indica, a bioactive betalain pigment, with a pro…
2018
Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl- concentration ([Cl-]i). Because GABAA receptors are ligand-gated Cl- channels, activation of these receptors can potentially influence [Cl-]i. However, whether the GABAergic activity during GDPs influences [Cl-]i is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immatu…
Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways.
2015
Abstract Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous…
Non-cognate bystander cytolysis by clonal epitope-specific CTL lines through CD28-CD80 interaction inhibits antibody production: A potential caveat t…
2015
Abstract Adoptive transfer of virus epitope-specific CD8 T cells is an immunotherapy option to control cytomegalovirus (CMV) infection and prevent CMV organ disease in immunocompromised solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT) recipients. The therapy aims at an early, selective recognition and cytolysis of infected cells for preventing viral spread in tissues with no adverse immunopathogenic side-effects by attack of uninfected bystander cells. Here we describe that virus epitope-specific, cloned T-cell lines lyse target cells that present the cognate antigenic peptide to the TCR, but simultaneously have the potential to lyse uninfected cells expressing…
The activation of NMDA receptors alters the structural dynamics of the spines of hippocampal interneurons
2017
N-Methyl-d-Aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play a key role in the structural plasticity of excitatory neurons, but to date little is known about their influence on the remodeling of interneurons. Among hippocampal interneurons, the somatostatin expressing cells in the CA1 stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change their density in response to different stimuli. In order to understand the role of NMDAR activation on the structural dynamics of the spines of somatostatin expressing interneurons in …
Neuronal LRP4 regulates synapse formation in the developing CNS
2017
The low-density lipoprotein receptor-related protein 4 (LRP4) is essential in muscle fibers for the establishment of the neuromuscular junction. Here, we show that LRP4 is also expressed by embryonic cortical and hippocampal neurons, and that downregulation of LRP4 in these neurons causes a reduction in density of synapses and number of primary dendrites. Accordingly, overexpression of LRP4 in cultured neurons had the opposite effect inducing more but shorter primary dendrites with an increased number of spines. Transsynaptic tracing mediated by rabies virus revealed a reduced number of neurons presynaptic to the cortical neurons in which LRP4 was knocked down. Moreover, neuron-specific kno…
Regulation of Dendritic Spine Morphology in Hippocampal Neurons by Copine-6.
2015
Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 level…