Search results for " fuel cell"
showing 10 items of 169 documents
Development of electrodes materials for SOFC fed by natural gas / biogas. Applications to "pre-reforming" and "single-chamber" concepts
2010
Solid Oxide Fuel Cell is a device for “clean” electricity production from chemical energy. The new configuration called “single-chamber” seems to be very attractive with several advantages over bi-chamber conventional configuration: easier manufacturing, lowering of working temperature, possible use of hydrocarbons as fuel… Such configuration involves the development of new electrode materials satisfying new requirements. The evaluation of 7 potential cathode materials through several characterizations has shown that a compromise has to be found since one material does not exhibit all the requested features. A library of 15 supported catalysts (3 metals and 5 supports) was developed. These …
Surface Self-Diffusion and Mean Displacement of Hydrogen on Graphite and a PEM Fuel Cell Catalyst Support
2009
International audience; Quasielastic neutron scattering (QENS) measurements together with equilibrium molecular dynamic (EMD) simulations have been performed to investigate the surface interaction between hydrogen molecules and a carbon material commonly used in polymer electrolyte membrane fuel cells (PEMFC), called XC-72. Half a monolayer of molecular hydrogen was adsorbed on to the carbon material at 2 K. QENS spectra were recorded at the time-of-flight spectrometer IN5 at 40, 45, 50, 60, 70, 80, and 90 K. Simultaneously the pressure was measured as a function of time to monitor the equilibrium surface coverage at each temperature. By using the Chudley and Elliott model for jump diffusio…
Life cycle assessment of solid oxide fuel cells and polymer electrolyte membrane fuel cells: A review
2017
Fuel cells (FCs) are among the key technologies that Europe will have to rely on in order to comply with the most recent environmental targets inspired by decarbonization and circular economy. The assessment of the real advantages of using FCs for producing energy must include a reliable analysis of the energy and environmental impacts during the life cycle of these systems, including the raw materials supply, production, use, and disposal. In this context, the life cycle assessment (LCA) is a well-established methodology for assessing the eco-profile of products and services and for identifying the components and the life cycle steps having the largest contribution to energy and environmen…
Analysis of Load Match in Nearly Zero Energy Buildings
2018
The concept of load matching refers to the degree of agreement or disagreement of the on-site generation with the building load profiles: it can be increased and optimised with modifications on both the energy demand and generation. In this context, the paper presents the load match analysis of a case study: a modular housing construction (it has an area of 45 m 2 and S/V ratio equal to 2.75 m −1 ) built in Messina (Italy). Moreover, in order to optimize the design of the next test module to be built, a parametric analysis was performed considering different scenarios on the generation side, to explore the effectiveness of the solutions sets used in current design and plan different solutio…
Heteropolyacids - Chitosan Membranes for H2/O2 Low Temperature Fuel Cells
2016
Proton exchange membrane fuel cells (PEMFCs) have received much attention in recent years because of their high power density, efficiency and zero-environmental pollution. As one of the key components in fuel cells, the proton exchange membrane is expected to have high proton conductivity and good electrochemical stability. In the attempt to promote PEMCFs commercialization, high cost of fuel cell systems and short lifecycle are the two main issues that need to be addressed, thus large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost.A…
Chitosan-heteropolyacid complex as high performance membranes for low temperature H2-O2 fuel cell
2014
Fabrication and Characterization of Chitosan-Heteropolyacid complex as membranes for low temperature H2-O2 fuel cell
2015
In this work we describe an easy procedure to fabricate homogeneous CS-HPA polyelectrolyte films using phosphotungstic acid (PTA) as cross-linking agent. The re action between CS chains and PTA is controlled in order to allow fabricating PEC thin films, that can be easily peeled off from the support, cut to any size and shape, whose thickness can be controlled by setting reticulation and time and/or chitosan concentration
Heteropolyacids - Chitosan Membranes for H2/O2 Low Temperature Fuel Cells
2016
Proton exchange membrane fuel cells (PEMFCs) have received much attention in recent years because of their high power density, efficiency and zero-environmental pollution. As one of the key components in fuel cells, the proton exchange membrane is expected to have high proton conductivity and good electrochemical stability. In the attempt to promote PEMCFs commercialization, high cost of fuel cell systems and short lifecycle are the two main issues that need to be addressed, thus large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost. A…
Hybrid organic-inorganic membranes for low temperature H2-O2 fuel cell
2014
Phosphomolybdic Acid and Mixed Phosphotungstic/Phosphomolybdic Acid Chitosan Membranes for H2/O2 Fuel Cells
2016
Proton exchange membrane fuel cells (PEMFCs) have received much attention in recent years because of their high power density, efficiency and zero-environmental pollution. As one of the key components in fuel cells, the proton exchange membrane is expected to have high proton conductivity and good electrochemical stability. In the attempt to promote PEMCFs commercialization, high cost of fuel cell systems and short lifecycle are the two main issues that need to be addressed, thus large research effort has been devoted in developing new polymer electrolytes that can replace the usually employed proton conductors, e.g. Nafion®, with other membranes of comparable performances but lower cost. A…