Search results for " fuel cell"
showing 10 items of 169 documents
Electricity Production from Yeast Wastewater in Membrane-Less Microbial Fuel Cell with Cu-Ag Cathode
2023
Wastewater has high potential as an energy source. Therefore, it is important to recover even the smallest part of this energy, e.g., in microbial fuel cells (MFCs). The obtained electricity production depends on the process rate of the electrodes. In MFC, the microorganisms are the catalyst, and the cathode is usually made of carbon material (e.g., with the addition of Pt). To increase the MFC efficiency (and reduce costs by reducing use of the noble metals), it is necessary to search the new cathode materials. In this work, the electricity production from yeast wastewater in membrane-less microbial fuel cells with Cu-Ag cathode was analyzed. In the first place, the measurements of the sta…
Microbial fuel cell with Ni-Co cathode
2017
Wraz ze wzrostem poziomu życia wzrasta zarówno zużycie energii, jak i ilość ścieków. Istnieje jednak możliwość produkcji energii z jednoczesnym oczyszczaniem ścieków. Urządzeniem, które może zrealizować to zadanie jest mikrobiologiczne ogniwo paliwowe. W ogniwach tego typu bakterie osadu czynnego wykorzystane są do produkcji energii podczas oczyszczania ścieków. Jednym z ograniczeń tego rozwiązania jest niska gęstość uzyskiwanego prądu. Możliwe jest jednak podwyższenie tego parametru przy wykorzystaniu odpowiedniego katalizatora elektrod. W artykule przedstawiono możliwość wykorzystania stopu Ni-Co jako katalizatora katody. Badania obejmowały przygotowanie elektrody oraz porównanie zmian st…
Wastewater treatment and electricity production in a microbial fuel cell with Cu–B alloy as the cathode
2019
The possibility of wastewater treatment and electricity production using a microbial fuel cell with Cu&ndash
Impact of operation condition on temperature distribution in single cell of polymer electrolyte fuel cell operated at higher temperature than usual
2016
For improving performance of the stationary Polymer Electrolyte Fuel Cell (PEFC) system, the cell operating temperature up to 90°C will be preferred in Japan during the period from 2020 to 2030. To understand the operation of the PEFC system under relatively high temperature conditions, detail heat and mass transfer analysis is required. The main focus of this study is to analyze the PEFC performance under operational conditions, such as initial operational temperature of cell (Tini), relative humidity of supply gas, and the cathode gas type, temperature distribution in a cell of PEFC (using Nafion membrane) under relatively higher operating temperature conditions. The in-plane temperature …
Design and characterization of bi-functional electrocatalytic layers for application in PEM unitized regenerative fuel cells
2010
Abstract Results concerning the development and characterization of bi-functional electrocatalytic layers for application in unitized regenerative fuel cells (URFCs) based on proton exchange membrane (PEM) technology are reported. Carbon-supported hydrophobic (10 wt.% of PTFE) Pt catalysts (40 wt.% of Pt), and Pt and Ir black powders of large specific areas have been synthesized. Their structure, morphology and electrochemical properties have been investigated using SEM, TEM, XRD analysis, and by measurements of polarization curves and cyclic voltammograms. Current–voltage curves have been recorded during water electrolysis and H 2 /O 2 fuel cell experiments to evaluate their performances a…
Proton Conducting Membrane Prepared by Cross-Linking Highly Sulfonated Peek for PEMFC Application
2009
The proton conducting membrane was prepared by cross-linking highly sulfonated and sulfinated poly(etheretherketone) (SsPEEK). The cross-linked membrane is low cost due to its use of non-expensive chemical and simple production procedure. The membrane exhibited high proton conductivity (0.04 S/cm at 60 °C), extremely reduced water uptake, enhanced strength and stability compared with that of non-cross-linked membrane. These results suggested that the cross-linked PEEK membrane is a suitable candidate of proton conducting membranes for polymer electrolyte membrane fuel cell (PEMFC) applications, particularly promising to be used in direct methanol fuel cell (DMFC) due to its lower methanol c…
PBI-based composite membranes for polymer fuel cells
2010
Abstract In the present study poly(2,2-(2,6-pyridin)-5,5-bibenzimidazole) was used for the preparation of novel MEAs for high-temperature polymer fuel cells (HT-PEMFCs). We prepared hybrid materials with two types of silica fillers in order to increase the MEA performances using this polymer. The membranes were characterized in terms of their microstructure and thermal stability. Cell operation tests and Electrochemical Impedance Spectroscopy were used for the characterization of the MEAs. A maximum power density of about 80 mW cm−2 was obtained at 300 mA cm−2 by using an imidazole-modified silica filler. The EIS technique showed that the fillers chiefly help to reduce the charge transfer r…
Synthesis and characterization of bisulfonated poly(vinyl alcohol)/graphene oxide composite membranes with improved proton exchange capabilities
2020
Abstract Composite membranes based on poly(vinyl alcohol) (PVA) and graphene oxide (GO) were prepared by solution-casting method to be used as proton exchange membranes (PEMs) in fuel cell (FC) applications. Bisulfonation was employed as a strategy to enhance the proton conductivity of these membranes. First, a direct sulfonation of the polymer matrix was accomplished by intra-sulfonation of the polymer matrix with propane sultone, followed by the inter-sulfonation of the polymer chains using sulfosuccinic acid (SSA) as a crosslinking agent. Furthermore, the addition of graphene oxide (GO) as inorganic filler was also evaluated to enhance the proton-conducting of the composite membranes. Th…
A Covalently Cross-linked Polyetheretherketone Proton Exchange Membrane for DMFC
2009
The proton exchange membrane was prepared by covalent cross-linking sulfonated-sulfinated polyetheretherketone. The cross-linked membrane showed high proton conductivity (0.04 S/cm) with suitable water uptake, low methanol permeability (2.21 × 10-7 cm2/s) and good electrochemical stability. The results suggested that cross-linked polyetheretherketone membrane is particularly promising to be used as proton exchange membrane for the direct methanol fuel cell application.
Microbial fuel cell with Ni-Co cathode
2016
The possibility of trwastewater treatment using the Ni-Co alloys as catalysts for cathode of mickrobial fuel cells is presented in this paper. Using the Ni-Co catalyst allows to increase the power of prototype microbal fuel sell. Use of Ni-Co catalyst will increase the efficiency of the production of electricity. Thid solution will allow to contribute to the development of high efficiency green energy sources.