Search results for " functional analysis"
showing 10 items of 184 documents
Hardy inequalities and Assouad dimensions
2017
We establish both sufficient and necessary conditions for weighted Hardy inequalities in metric spaces in terms of Assouad (co)dimensions. Our sufficient conditions in the case where the complement is thin are new even in Euclidean spaces, while in the case of a thick complement we give new formulations for previously known sufficient conditions which reveal a natural duality between these two cases. Our necessary conditions are rather straight-forward generalizations from the unweighted case, but together with some examples they indicate the essential sharpness of our results. In addition, we consider the mixed case where the complement may contain both thick and thin parts.
Representation Theorems for Solvable Sesquilinear Forms
2017
New results are added to the paper [4] about q-closed and solvable sesquilinear forms. The structure of the Banach space $\mathcal{D}[||\cdot||_\Omega]$ defined on the domain $\mathcal{D}$ of a q-closed sesquilinear form $\Omega$ is unique up to isomorphism, and the adjoint of a sesquilinear form has the same property of q-closure or of solvability. The operator associated to a solvable sesquilinear form is the greatest which represents the form and it is self-adjoint if, and only if, the form is symmetric. We give more criteria of solvability for q-closed sesquilinear forms. Some of these criteria are related to the numerical range, and we analyse in particular the forms which are solvable…
Finitely fibered Rosenthal compacta and trees
2009
We study some topological properties of trees with the interval topology. In particular, we characterize trees which admit a 2-fibered compactification and we present two examples of trees whose one-point compactifications are Rosenthal compact with certain renorming properties of their spaces of continuous functions.
Envelopes of open sets and extending holomorphic functions on dual Banach spaces
2010
We investigate certain envelopes of open sets in dual Banach spaces which are related to extending holomorphic functions. We give a variety of examples of absolutely convex sets showing that the extension is in many cases not possible. We also establish connections to the study of iterated weak* sequential closures of convex sets in the dual of separable spaces.
Rolewicz-type chaotic operators
2015
In this article we introduce a new class of Rolewicz-type operators in l_p, $1 \le p < \infty$. We exhibit a collection F of cardinality continuum of operators of this type which are chaotic and remain so under almost all finite linear combinations, provided that the linear combination has sufficiently large norm. As a corollary to our main result we also obtain that there exists a countable collection of such operators whose all finite linear combinations are chaotic provided that they have sufficiently large norm.
On some dual frames multipliers with at most countable spectra
2021
A dual frames multiplier is an operator consisting of analysis, multiplication and synthesis processes, where the analysis and the synthesis are made by two dual frames in a Hilbert space, respectively. In this paper we investigate the spectra of some dual frames multipliers giving, in particular, conditions to be at most countable. The contribution extends the results available in literature about the spectra of Bessel multipliers with symbol decaying to zero and of multipliers of dual Riesz bases.
Universal differentiability sets and maximal directional derivatives in Carnot groups
2019
We show that every Carnot group G of step 2 admits a Hausdorff dimension one `universal differentiability set' N such that every real-valued Lipschitz map on G is Pansu differentiable at some point of N. This relies on the fact that existence of a maximal directional derivative of f at a point x implies Pansu differentiability at the same point x. We show that such an implication holds in Carnot groups of step 2 but fails in the Engel group which has step 3.
On a generalisation of Krein's example
2017
We generalise a classical example given by Krein in 1953. We compute the difference of the resolvents and the difference of the spectral projections explicitly. We further give a full description of the unitary invariants, i.e., of the spectrum and the multiplicity. Moreover, we observe a link between the difference of the spectral projections and Hankel operators.
Positive linear maps on normal matrices
2018
For a positive linear map [Formula: see text] and a normal matrix [Formula: see text], we show that [Formula: see text] is bounded by some simple linear combinations in the unitary orbit of [Formula: see text]. Several elegant sharp inequalities are derived, for instance for the Schur product of two normal matrices [Formula: see text], [Formula: see text] for some unitary [Formula: see text], where the constant [Formula: see text] is optimal.
Dominated polynomials on infinite dimensional spaces
2008
The aim of this paper is to prove a stronger version of a conjecture on the existence of non-dominated scalar-valued m-homogeneous polynomials (m>=3) on arbitrary infinite dimensional Banach spaces.