Search results for " functional analysis"

showing 10 items of 184 documents

New Orlicz-Hardy Spaces Associated with Divergence Form Elliptic Operators

2009

Let $L$ be the divergence form elliptic operator with complex bounded measurable coefficients, $\omega$ the positive concave function on $(0,\infty)$ of strictly critical lower type $p_\oz\in (0, 1]$ and $\rho(t)={t^{-1}}/\omega^{-1}(t^{-1})$ for $t\in (0,\infty).$ In this paper, the authors study the Orlicz-Hardy space $H_{\omega,L}({\mathbb R}^n)$ and its dual space $\mathrm{BMO}_{\rho,L^\ast}({\mathbb R}^n)$, where $L^\ast$ denotes the adjoint operator of $L$ in $L^2({\mathbb R}^n)$. Several characterizations of $H_{\omega,L}({\mathbb R}^n)$, including the molecular characterization, the Lusin-area function characterization and the maximal function characterization, are established. The …

Mathematics - Functional AnalysisMathematics::Functional AnalysisMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Classical Analysis and ODEs42B35 (Primary) 42B30 46E30 (Secondary)Functional Analysis (math.FA)
researchProduct

Notes on bilinear multipliers on Orlicz spaces

2019

Let $\Phi_1 , \Phi_2 $ and $ \Phi_3$ be Young functions and let $L^{\Phi_1}(\mathbb{R})$, $L^{\Phi_2}(\mathbb{R})$ and $L^{\Phi_3}(\mathbb{R})$ be the corresponding Orlicz spaces. We say that a function $m(\xi,\eta)$ defined on $\mathbb{R}\times \mathbb{R}$ is a bilinear multiplier of type $(\Phi_1,\Phi_2,\Phi_3)$ if \[ B_m(f,g)(x)=\int_\mathbb{R} \int_\mathbb{R} \hat{f}(\xi) \hat{g}(\eta)m(\xi,\eta)e^{2\pi i (\xi+\eta) x}d\xi d\eta \] defines a bounded bilinear operator from $L^{\Phi_1}(\mathbb{R}) \times L^{\Phi_2}(\mathbb{R})$ to $L^{\Phi_3}(\mathbb{R})$. We denote by $BM_{(\Phi_1,\Phi_2,\Phi_3)}(\mathbb{R})$ the space of all bilinear multipliers of type $(\Phi_1,\Phi_2,\Phi_3)$ and inve…

Mathematics - Functional AnalysisMultiplier (Fourier analysis)CombinatoricsBilinear operatorMathematics::Operator AlgebrasGeneral MathematicsFOS: MathematicsHigh Energy Physics::ExperimentType (model theory)Space (mathematics)Lp spaceMathematicsFunctional Analysis (math.FA)
researchProduct

Geometric characterizations of the strict Hadamard differentiability of sets

2021

Let $S$ be a closed subset of a Banach space $X$. Assuming that $S$ is epi-Lipschitzian at $\bar{x}$ in the boundary $ \bd S$ of $S$, we show that $S$ is strictly Hadamard differentiable at $\bar{x}$ IFF the Clarke tangent cone $T(S, \bar{x})$ to $S$ at $\bar{x}$ contains a closed hyperplane IFF the Clarke tangent cone $T(\bd S, \bar{x})$ to $\bd S$ at $\bar{x}$ is a closed hyperplane. Moreover when $X$ is of finite dimension, $Y$ is a Banach space and $g: X \mapsto Y$ is a locally Lipschitz mapping around $\bar{x}$, we show that $g$ is strictly Hadamard differentiable at $\bar{x}$ IFF $T(\mathrm{graph}\,g, (\bar{x}, g(\bar{x})))$ is isomorphic to $X$ IFF the set-valued mapping $x\rightrigh…

Mathematics - Functional AnalysisOptimization and Control (math.OC)High Energy Physics::PhenomenologyFOS: Mathematics[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]High Energy Physics::Experiment[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]Mathematics - Optimization and ControlFunctional Analysis (math.FA)
researchProduct

Some Results about Frames

1997

In this paper we discuss some topics related to the general theory of frames. In particular we focus our attention to the existence of different 'reconstruction formulas' for a given vector of a certain Hilbert space and to some refinement of the perturbative approach for the computation of the dual frame.

Mathematics - Functional AnalysisPhysics and Astronomy (all)FOS: MathematicsComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONSettore MAT/07 - Fisica MatematicaFunctional Analysis (math.FA)
researchProduct

Optimal transport on the classical Wiener space with different norms

2011

In this paper we study two basic facts of optimal transportation on Wiener space W. Our first aim is to answer to the Monge Problem on the Wiener space endowed with the Sobolev type norm (k,gamma) to the power of p (cases p = 1 and p > 1 are considered apart). The second one is to prove 1-convexity (resp. C-convexity) along (constant speed) geodesics of relative entropy in (P2(W);W2), where W is endowed with the infinite norm (resp. with (k,gamma) norm), and W2 is the 2-distance of Wasserstein.

Mathematics - Functional AnalysisProbability (math.PR)FOS: MathematicsMathematics - ProbabilityFunctional Analysis (math.FA)
researchProduct

Pointwise inequalities for Sobolev functions on generalized cuspidal domains

2022

We establish point wise inequalities for Sobolev functions on a wider class of outward cuspidal domains. It is a generalization of an earlier result by the author and his collaborators

Mathematics - Functional Analysiscuspidal domainsFOS: Mathematicspointwise inequalitySobolev functionsAstrophysics::Cosmology and Extragalactic AstrophysicsArticlesepäyhtälötfunktionaalianalyysiFunctional Analysis (math.FA)
researchProduct

Multi-resolution analysis in arbitrary Hilbert spaces

1997

We discuss the possibility of introducing a multi-resolution in a Hilbert space which is not necessarily a space of functions. We investigate which of the classical properties can be translated to this more general framework and the way in which this can be done. We comment on the procedure proposed by means of many examples.

Mathematics - Functional Analysismulti resolution analysisFOS: MathematicsSettore MAT/07 - Fisica MatematicaComputer Science::DatabasesFunctional Analysis (math.FA)
researchProduct

Some perturbation results for quasi-bases and other sequences of vectors

2023

We discuss some perturbation results concerning certain pairs of sequences of vectors in a Hilbert space $\Hil$ and producing new sequences which share, with the original ones, { reconstruction formulas on a dense subspace of $\Hil$ or on the whole space}. We also propose some preliminary results on the same issue, but in a distributional settings.

Mathematics - Functional Analysisperturbationsquasi-baseSettore MAT/05 - Analisi MatematicaFOS: MathematicsFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Settore MAT/07 - Fisica MatematicaMathematical PhysicsFunctional Analysis (math.FA)
researchProduct

Geometry and analysis of Dirichlet forms

2012

Let $ \mathscr E $ be a regular, strongly local Dirichlet form on $L^2(X, m)$ and $d$ the associated intrinsic distance. Assume that the topology induced by $d$ coincides with the original topology on $ X$, and that $X$ is compact, satisfies a doubling property and supports a weak $(1, 2)$-Poincar\'e inequality. We first discuss the (non-)coincidence of the intrinsic length structure and the gradient structure. Under the further assumption that the Ricci curvature of $X$ is bounded from below in the sense of Lott-Sturm-Villani, the following are shown to be equivalent: (i) the heat flow of $\mathscr E$ gives the unique gradient flow of $\mathscr U_\infty$, (ii) $\mathscr E$ satisfies the Ne…

Mathematics(all)General MathematicsPoincaré inequalityMetric measure space01 natural sciencesMeasure (mathematics)Length structuresymbols.namesakeMathematics - Metric GeometrySierpinski gasketGradient flowClassical Analysis and ODEs (math.CA)FOS: Mathematics0101 mathematicsRicci curvatureHeat kernelMathematicsDirichlet formProbability (math.PR)010102 general mathematicsMathematical analysista111Differential structureMetric Geometry (math.MG)Functional Analysis (math.FA)Sierpinski triangleMathematics - Functional Analysis010101 applied mathematicsRicci curvatureMathematics - Classical Analysis and ODEsPoincaré inequalityBounded functionsymbolsBalanced flowDirichlet formIntrinsic distanceMathematics - ProbabilityAdvances in Mathematics
researchProduct

Semiclassical Gevrey operators and magnetic translations

2020

We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann space of entire functions with quadratic exponential weights. Using some ideas of the time frequency analysis, we show that such operators are uniformly bounded on a natural scale of exponentially weighted spaces of holomorphic functions, provided that the Gevrey index is $\geq 2$.

Mathematics::Complex VariablesMathematics - Complex VariablesMathematics::Analysis of PDEsStatistical and Nonlinear Physics32W25 35S05 47G30Mathematics::Spectral TheoryFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Analysis of PDEsFOS: MathematicsGeometry and TopologyComplex Variables (math.CV)Mathematical PhysicsAnalysis of PDEs (math.AP)
researchProduct