Search results for " functions"

showing 10 items of 972 documents

If P≠NP then some strongly noninvertible functions are invertible

2006

AbstractRabi, Rivest, and Sherman alter the standard notion of noninvertibility to a new notion they call strong noninvertibility, and show—via explicit cryptographic protocols for secret-key agreement (Rabi and Sherman attribute this protocol to Rivest and Sherman) and digital signatures (Rabi and Sherman)—that strongly noninvertible functions are very useful components in protocol design. Their definition of strong noninvertibility has a small twist (“respecting the argument given”) that is needed to ensure cryptographic usefulness. In this paper, we show that this small twist has a consequence: unless P=NP, some strongly noninvertible functions are invertible.

Discrete mathematicsGeneral Computer ScienceComputational complexity theorybusiness.industryP versus NP problemOne-way functionsCryptographyOne-way functionCryptographic protocolTheoretical Computer Sciencelaw.inventionComputational complexityInvertible matrixDigital signaturelawAssociativityCryptographyStrong noninvertibilitybusinessAssociative propertyMathematicsTheoretical Computer Science
researchProduct

Kolmogorov numberings and minimal identification

1995

Identification of programs for computable functions from their graphs by algorithmic devices is a well studied problem in learning theory. Freivalds and Chen consider identification of ‘minimal’ and ‘nearly minimal’ programs for functions from their graphs. To address certain problems in minimal identification for Godel numberings, Freivalds later considered minimal identification in Kolmogorov Numberings. Kolmogorov numberings are in some sense optimal numberings and have some nice properties. We prove certain hierarchy results for minimal identification in every Kolmogorov numbering. In addition we also compare minimal identification in Godel numbering versus minimal identification in Kol…

Discrete mathematicsIdentification (information)Computable functionHierarchy (mathematics)Gödel numberingRecursive functionsInductive reasoningNumberingMathematics
researchProduct

Probabilistic limit identification up to “small” sets

1996

In this paper we study limit identification of total recursive functions in the case when “small” sets of errors are allowed. Here the notion of “small” sets we formalize in a very general way, i.e. we define a notion of measure for subsets of natural numbers, and we consider as being small those sets, which are subsets of sets with zero measure.

Discrete mathematicsIdentification (information)Zero (complex analysis)Recursive functionsNatural numberLimit (mathematics)Measure (mathematics)Mathematics
researchProduct

VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS

2008

Let $(\Omega, \Sigma, \mu)$ be a $\sigma-$finite measure space, $1\le p \lt \infty$, $X$ be a Banach space $X$ and ${\cal B} :X\times Y \to Z$ be a bounded bilinear map. We say that an $X$-valued function $f$ is $p-$integrable with respect to ${\cal B}$ whenever $\sup\{\int_\Omega\|{\cal B}(f(w),y)\|^pd\mu: \|y\|=1\}$ is finite. We identify the spaces of functions integrable with respect to the bilinear maps arising from H\"older's and Young's inequalities. We apply the theory to give conditions on $X$-valued kernels for the boundedness of integral operators $T_{{\cal B}}(f) (w)=\int_{\Omega'}{{\cal B}}(k(w,w'),$ $f(w'))d\mu'(w')$ from ${\mathrm L}^p(Y)$ into ${\mathrm L}^p(Z)$, extending t…

Discrete mathematicsIntegrable systemGeneral MathematicsBanach spaceFunction (mathematics)Space (mathematics)Measure (mathematics)Omegavector-valued functionsbilinear mapBounded function42B3047B35Vector-valued functionMathematics
researchProduct

Homomorphisms and composition operators on algebras of analytic functions of bounded type

2005

Abstract Let U and V be convex and balanced open subsets of the Banach spaces X and Y, respectively. In this paper we study the following question: given two Frechet algebras of holomorphic functions of bounded type on U and V, respectively, that are algebra isomorphic, can we deduce that X and Y (or X * and Y * ) are isomorphic? We prove that if X * or Y * has the approximation property and H wu ( U ) and H wu ( V ) are topologically algebra isomorphic, then X * and Y * are isomorphic (the converse being true when U and V are the whole space). We get analogous results for H b ( U ) and H b ( V ) , giving conditions under which an algebra isomorphism between H b ( X ) and H b ( Y ) is equiv…

Discrete mathematicsMathematics(all)Approximation propertyGeneral MathematicsSpectrum (functional analysis)Holomorphic functionStructure (category theory)Banach spaceHomomorphismsBounded typePolynomialsCombinatoricsBanach spacesHolomorphic functionsHomomorphismIsomorphismMathematicsAdvances in Mathematics
researchProduct

Norm, essential norm and weak compactness of weighted composition operators between dual Banach spaces of analytic functions

2017

Abstract In this paper we estimate the norm and the essential norm of weighted composition operators from a large class of – non-necessarily reflexive – Banach spaces of analytic functions on the open unit disk into weighted type Banach spaces of analytic functions and Bloch type spaces. We also show the equivalence of compactness and weak compactness of weighted composition operators from these weighted type spaces into a class of Banach spaces of analytic functions, that includes a large family of conformally invariant spaces like BMOA and analytic Besov spaces.

Discrete mathematicsMathematics::Functional AnalysisApplied MathematicsTopological tensor product010102 general mathematicsEberlein–Šmulian theoremWeakly compact operatorBloch type spaceBanach manifoldFinite-rank operator01 natural sciences010101 applied mathematicsEssential normWeighted spaces of analytic functionsFréchet spaceWeighted composition operatorInterpolation spaceBirnbaum–Orlicz space0101 mathematicsLp spaceAnalysisMathematics
researchProduct

A Riemann manifold structure of the spectra of weighted algebras of holomorphic functions

2009

[EN] In this paper we give general conditions on a countable family V of weights on an unbounded open set U in a complex Banach space X such that the weighted space HV (U) of holomorphic functions on U has a Frechet algebra structure. For such weights it is shown that the spectrum of HV(U) has a natural analytic manifold structure when X is a symmetrically regular Banach space, and in particular when X = C-n. (C) 2009 Elsevier Ltd. All rights reserved.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsFréchet algebraWeighted space of holomorphic functionsHolomorphic functional calculusInfinite-dimensional vector functionSpectrum (functional analysis)Holomorphic functionFrechet algebraBanach manifoldAnalytic manifold structureAnalytic manifoldBergman spaceSymmetrically regular Banach spaceGeometry and TopologyMATEMATICA APLICADAWeighted spaceMathematicsTopology
researchProduct

A space of projections on the Bergman space

2010

We define a set of projections on the Bergman space A 2 , which is parameterized by an ane subset of a Banach space of holomorphic functions in the disk and which includes the classical Forelli-Rudin projections.

Discrete mathematicsMathematics::Functional AnalysisPure mathematicsMathematics::Complex VariablesGeneral MathematicsInfinite-dimensional vector functionHolomorphic functionBanach spaceMathematics::General TopologyQuotient space (linear algebra)Continuous functions on a compact Hausdorff spaceBergman spaceBesov spaceBergman kernelMathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct

2-SYMMETRIC CRITICAL POINT THEOREMS FOR NON-DIFFERENTIABLE FUNCTIONS

2008

AbstractIn this paper, some min–max theorems for even andC1functionals established by Ghoussoub are extended to the case of functionals that are the sum of a locally Lipschitz continuous, even term and a convex, proper, lower semi-continuous, even function. A class of non-smooth functionals admitting an unbounded sequence of critical values is also pointed out.

Discrete mathematicsNon-smooth critical point theory minmax theorems symmetric functionsGeneral MathematicsRegular polygonEven and odd functionsDifferentiable functionLipschitz continuityCritical point (mathematics)MathematicsGlasgow Mathematical Journal
researchProduct

General inductive inference types based on linearly-ordered sets

1996

In this paper, we reconsider the definitions of procrastinating learning machines. In the original definition of Freivalds and Smith [FS93], constructive ordinals are used to bound mindchanges. We investigate the possibility of using arbitrary linearly ordered sets to bound mindchanges in a similar way. It turns out that using certain ordered sets it is possible to define inductive inference types more general than the previously known ones. We investigate properties of the new inductive inference types and compare them to other types.

Discrete mathematicsOrdered setRecursive functionsInductive reasoningConstructiveMaximal elementMathematics
researchProduct