Search results for " garnet"

showing 4 items of 44 documents

Optical Properties of Natural and Synthetic Minerals

2015

The results of investigation of optical absorption and photoluminescence (PL) of topaz, beryl and yttrium aluminium garnet crystals doped with different concentrations of transition ions exposed to fast neutron irradiation and electron irradiation are presented. We suppose that irradiation leads to the formation of two types of complex centers: "Me2+-F+ (or F) centre" and complex centers, which consist of a cation vacancy and an impurity (iron, manganese and chromium) ion. Exchange interaction between radiation defects and impurity ions during neutron or electron irradiation gives rise to appearance of additional absorption and luminescence band broadening in investigated crystals.

inorganic chemicalsMaterials sciencePhotoluminescenceAbsorption spectroscopyAnalytical chemistrytechnology industry and agriculturechemistry.chemical_compoundCondensed Matter::Materials SciencechemistryYttrium aluminium garnetImpurityVacancy defectElectron beam processingPhysics::Atomic and Molecular ClustersIrradiationAbsorption (chemistry)inorganic compounds; absorption spectra; photoluminescence; neutron irradiationNuclear chemistryEnvironment. Technology. Resources.
researchProduct

Excitation Transfer Engineering in Ce-Doped Oxide Crystalline Scintillators by Codoping with Alkali-Earth Ions

2018

This work has been supported by the European Social Fund Measure No. 09.3.3-LMT-K-712 activity Improvement of Researchers Qualification by Implementing the World-Class R&D Projects, and by grant #14.W03.31.0004 of the Russian Federation Government. Authors are grateful to CERN Crystal Clear Collaboration and COST Action TD1401 "Fast Advanced Scintillator Timing (FAST)" for support of collaboration.

multicomponent garnetsMaterials scienceInorganic chemistryexcitation transferscintillators02 engineering and technologyScintillator7. Clean energy01 natural sciencesDoped oxideIonfree carrier0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryElectrical and Electronic EngineeringAlkaline earth metal010308 nuclear & particles physicsmulticomponent garnetfree carriersSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsFree carrierSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsscintillator0210 nano-technologyExcitationphysica status solidi (a)
researchProduct

Luminescence properties of neodymium-doped yttrium aluminium garnet obtained by the co-precipitation method combined with the mechanical process

2005

Nanopowders of yttrium aluminium garnet Y3Al5O12 (YAG) doped with neodymium ions were obtained by the co-precipitation method from the reaction of aluminium and yttrium nitrate and neodymium oxide with ammonia. After washing and drying the hydroxide precursors were calcined at 500, 700, 800 and 900 °C for 1 hour and at 1000 °C for 3 hours. This product was treated by ball milling in a zirconia vial for 0.5, 1.5 and 10 h in order to achieve smaller nanoparticles. The structure, microstructure, morphology and optical properties were investigated by means of diffractometric, microscopic and spectroscopic techniques. The course of the amorphous-to-crystalline transformation was complete after c…

nanoparticles; coprecipitation; ball millingMaterials scienceMetallurgychemistry.chemical_elementcoprecipitationYttriumCondensed Matter PhysicsMicrostructureNeodymiumAtomic and Molecular Physics and Opticschemistry.chemical_compoundchemistryAluminiumYttrium aluminium garnetGeneral Materials ScienceCubic zirconiananoparticlesball millingLuminescenceBall millNuclear chemistry
researchProduct

Long-transient conoscopic pattern technique

1999

0038-1098; Recent results on laser induced anisotropy in terbium gallium garnet are extended to the dynamic regime. We observed that the characteristic conoscopic pattern formation time presents a quadratic dependence on the beam size. The observed pattern intensity is accounted for by a simple analytical formula. The transient refractive index change due to thermal stress in the terbium gallium garnet is determined. (C) 1999 Elsevier Science Ltd. All rights reserved.

optical propertiesheat capacityPhysics::OpticsPattern formation02 engineering and technologyTERBIUM-GALLIUM GARNET01 natural sciencesTerbium gallium garnetlaw.invention010309 opticsCondensed Matter::Materials Sciencechemistry.chemical_compoundOpticslaw0103 physical sciencesMaterials ChemistryBirefringenceCondensed matter physicsbusiness.industrynonlinear opticsNonlinear opticsGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsLaserIntensity (physics)chemistryTransient (oscillation)0210 nano-technologybusinessRefractive index
researchProduct