Search results for " garnet"
showing 4 items of 44 documents
Optical Properties of Natural and Synthetic Minerals
2015
The results of investigation of optical absorption and photoluminescence (PL) of topaz, beryl and yttrium aluminium garnet crystals doped with different concentrations of transition ions exposed to fast neutron irradiation and electron irradiation are presented. We suppose that irradiation leads to the formation of two types of complex centers: "Me2+-F+ (or F) centre" and complex centers, which consist of a cation vacancy and an impurity (iron, manganese and chromium) ion. Exchange interaction between radiation defects and impurity ions during neutron or electron irradiation gives rise to appearance of additional absorption and luminescence band broadening in investigated crystals.
Excitation Transfer Engineering in Ce-Doped Oxide Crystalline Scintillators by Codoping with Alkali-Earth Ions
2018
This work has been supported by the European Social Fund Measure No. 09.3.3-LMT-K-712 activity Improvement of Researchers Qualification by Implementing the World-Class R&D Projects, and by grant #14.W03.31.0004 of the Russian Federation Government. Authors are grateful to CERN Crystal Clear Collaboration and COST Action TD1401 "Fast Advanced Scintillator Timing (FAST)" for support of collaboration.
Luminescence properties of neodymium-doped yttrium aluminium garnet obtained by the co-precipitation method combined with the mechanical process
2005
Nanopowders of yttrium aluminium garnet Y3Al5O12 (YAG) doped with neodymium ions were obtained by the co-precipitation method from the reaction of aluminium and yttrium nitrate and neodymium oxide with ammonia. After washing and drying the hydroxide precursors were calcined at 500, 700, 800 and 900 °C for 1 hour and at 1000 °C for 3 hours. This product was treated by ball milling in a zirconia vial for 0.5, 1.5 and 10 h in order to achieve smaller nanoparticles. The structure, microstructure, morphology and optical properties were investigated by means of diffractometric, microscopic and spectroscopic techniques. The course of the amorphous-to-crystalline transformation was complete after c…
Long-transient conoscopic pattern technique
1999
0038-1098; Recent results on laser induced anisotropy in terbium gallium garnet are extended to the dynamic regime. We observed that the characteristic conoscopic pattern formation time presents a quadratic dependence on the beam size. The observed pattern intensity is accounted for by a simple analytical formula. The transient refractive index change due to thermal stress in the terbium gallium garnet is determined. (C) 1999 Elsevier Science Ltd. All rights reserved.