Search results for " geometria"

showing 10 items of 291 documents

Cardinal inequalities involving the Hausdorff pseudocharacter

2023

We establish several bounds on the cardinality of a topological space involving the Hausdorff pseudocharacter $H\psi(X)$. This invariant has the property $\psi_c(X)\leq H\psi(X)\leq\chi(X)$ for a Hausdorff space $X$. We show the cardinality of a Hausdorff space $X$ is bounded by $2^{pwL_c(X)H\psi(X)}$, where $pwL_c(X)\leq L(X)$ and $pwL_c(X)\leq c(X)$. This generalizes results of Bella and Spadaro, as well as Hodel. We show additionally that if $X$ is a Hausdorff linearly Lindel\"of space such that $H\psi(X)=\omega$, then $|X|\le 2^\omega$, under the assumption that either $2^{<\mathfrak{c}}=\mathfrak{c}$ or $\mathfrak{c}<\aleph_\omega$. The following game-theoretic result is shown: i…

Cardinality bounds Hausdorff pseudocharacter Topological gamesSettore MAT/03 - Geometria
researchProduct

Voisin's Conjecture for 0-cycles on Calabi-Yau varieties and their mirror

2019

We study a conjecture, due to Voisin, on 0-cycles on varieties with pg = 1. Using Kimura’s finite dimensional motives and recent results of Vial’s on the refined (Chow–)Künneth decomposition, we provide a general criterion for Calabi–Yau manifolds of dimension at most 5 to verify Voisin’s conjecture. We then check, using in most cases some cohomological computations on the mirror partners, that the criterion can be successfully applied to various examples in each dimension up to 5.

Chow groupAlgebraic cyclemotiveCalabi–Yau varietiesfinite-dimensional motiveSettore MAT/03 - Geometria
researchProduct

A class of imprimitive groups

2010

We classify imprimitive groups inducing the alternating group A4 on the set of blocks, with the inertia subgroup satisfying some very natural geometrical conditions which force the group to operate linearly.

Class (set theory)Algebra and Number Theorypermutation groups imprimitive groups sharply transitive groupsPermutation groupsGroup (mathematics)Applied Mathematicsmedia_common.quotation_subjectAlternating groupimprimitive groupsPermutation groupInertiaCombinatoricsPermutation groups; imprimitive groups; sharply transitive groupsSettore MAT/03 - GeometriaMathematicsmedia_commonsharply transitive groups
researchProduct

Automorfismi di Codici Algebrico-Geometrici Generalizzati

2008

In questo lavoro si studiano gli automorfismi di codici algebrico geometrici generalizzati costruiti a partire da campi di funzione razionali, ellittici o iperellittici.

Codici algebrico geometriciSettore MAT/03 - Geometriacampi finitiposticampi di funzione
researchProduct

Multiplicative loops of 2-dimensional topological quasifields

2015

We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.

CollineationAlgebraic structureDimension (graph theory)Topology01 natural sciencesSection (fiber bundle)TermészettudományokFOS: MathematicsCollineation groupLocally compact space0101 mathematicsMatematika- és számítástudományokMathematicsAlgebra and Number TheoryGroup (mathematics)010102 general mathematicsMultiplicative function20N05 22A30 12K99 51A40 57M60Lie groupMathematics - Rings and AlgebrasSections in Lie group010101 applied mathematicsTranslation planes and speadsMultiplicative loops of locally compact quasifieldRings and Algebras (math.RA)Settore MAT/03 - Geometria
researchProduct

Hurwitz spaces of coverings with two special fibers and monodromy group a Weyl group of typeBd

2012

f! Y; where is a degree-two coverings with n1 branch points and branch locus D and f is a degree-d coverings with n2 points of simple branching and two special points whose local monodromy is given by e and q, respectively. Furthermore the covering f has monodromy group Sd and f. D /\ D fD? where D f denotes the branch locus of f . We prove that the corresponding Hurwitz spaces are irreducible under the hypothesis n2 s r dC 1.

CombinatoricsAlgebraWeyl groupsymbols.namesakeMonodromyGeneral MathematicssymbolsSettore MAT/03 - GeometriaHurwitz spaces special fibers branched coverings Weyl group of type B_d monodromy braid moves.Locus (mathematics)Branch pointMathematicsPacific Journal of Mathematics
researchProduct

Transitive factorizations in the hyperoctahedral group

2008

The classical Hurwitz enumeration problem has a presentation in terms of transitive factor- izationsin the symmetric group. This presentationsuggestsageneralizationfromtypeAto otherfinite reflection groups and, in particular, to type B.W e study this generalization both from ac ombinatorial and a geometric point of view, with the prospect of providing am eans of understanding more of the structure of the moduli spaces of maps with an S2-symmetry. The type A case has been well studied and connects Hurwitz numbers to the moduli space of curves. W ec onjecture an analogous setting for the type B case that is studied here. 1I ntroduction Transitive factorizations of permutations into transposit…

CombinatoricsAlgebraic combinatoricsHurwitz quaternionHurwitz problemSymmetric groupGeneral MathematicsHurwitz's automorphisms theoremHurwitz matrixHurwitz polynomialSettore MAT/03 - GeometriaHyperoctahedral groupMathematicssymmetric group covering space
researchProduct

Kirkman's tetrahedron and the fifteen schoolgirl problem

2011

We give a visual construction of two solutions to Kirkman's fifteen schoolgirl problem by combining the fifteen simplicial elements of a tetrahedron. Furthermore, we show that the two solutions are nonisomorphic by introducing a new combinatorial algorithm. It turns out that the two solutions are precisely the two nonisomorphic arrangements of the 35 projective lines of PG(3,2) into seven classes of five mutually skew lines. Finally, we show that the two solutions are interchanged by the canonical duality of the projective space.

CombinatoricsGeneral Mathematics010102 general mathematics0103 physical sciencesKirkman triple systems PG(32)Tetrahedron010307 mathematical physicsSettore MAT/03 - Geometria0101 mathematics01 natural sciencesMathematics
researchProduct

On closures of discrete sets

2018

The depth of a topological space $X$ ($g(X)$) is defined as the supremum of the cardinalities of closures of discrete subsets of $X$. Solving a problem of Mart\'inez-Ruiz, Ram\'irez-P\'aramo and Romero-Morales, we prove that the cardinal inequality $|X| \leq g(X)^{L(X) \cdot F(X)}$ holds for every Hausdorff space $X$, where $L(X)$ is the Lindel\"of number of $X$ and $F(X)$ is the supremum of the cardinalities of the free sequences in $X$.

CombinatoricsMathematics (miscellaneous)Cardinal invariants Lindelof space Discrete set Elementary submodel CellularityGeneral Topology (math.GN)FOS: MathematicsHausdorff spaceMathematics::General TopologySettore MAT/03 - GeometriaTopological spaceDiscrete setInfimum and supremumMathematics - General TopologyMathematics
researchProduct

A note on coverings with special fibres and monodromy group $ S_{d}$

2012

We consider branched coverings of degree over with monodromy group , points of simple branching, special points and fixed branching data at the special points, where is a smooth connected complex projective curve of genus , and , are integers with . We prove that the corresponding Hurwitz spaces are irreducible if .

CombinatoricsProjective curveBranching (linguistics)Mathematics::Algebraic GeometryMonodromyGeneral MathematicsHigh Energy Physics::ExperimentHurwitz spaces special fibres branched coverings monodromy braid moves.Settore MAT/03 - GeometriaMathematicsIzvestiya: Mathematics
researchProduct