Search results for " geometry"
showing 10 items of 2294 documents
The module structure of Hochschild homology in some examples
2008
Abstract In this Note we give a simple proof of a conjecture by A. Caldararu stating the compatibility between the modified Hochschild–Kostant–Rosenberg isomorphism and the action of Hochschild cohomology on Hochschild homology in the case of Calabi–Yau manifolds and smooth projective curves. To cite this article: E. Macri` et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008).
Vector Bundles and Torsion Free Sheaves on Degenerations of Elliptic Curves
2006
In this paper we give a survey about the classification of vector bundles and torsion free sheaves on degenerations of elliptic curves. Coherent sheaves on singular curves of arithmetic genus one can be studied using the technique of matrix problems or via Fourier-Mukai transforms, both methods are discussed here. Moreover, we include new proofs of some classical results about vector bundles on elliptic curves.
Cohomologie relative des applications polynomiales
2001
Let F be a polynomial dominating mapping from Cn to Cq with n>q. We study the de Rham cohomology of the fibres of F, and its relative cohomology groups. Let us fix a strictly positive weighted homogeneous degree on C[x1,…,xn]. With the leading terms of the coordinate functions of F, we construct a fibre of F that is said to be “at infinity”. We introduce the cohomology groups of F at infinity. These groups, denoted by Hk(F−1(∞)), enable us to study all the other cohomology groups of F. For instance, if the fibre at infinity has an isolated singularity at the origin, we prove that any quasi-homogeneous basis of Hn−q(F−1(∞)) provides a basis of all groups Hn−q(F−1(y)), as well as a basis of t…
2002
Generalizing cones over projective toric varieties, we present arbitrary toric varieties as quotients of quasiaffine toric varieties. Such quotient presentations correspond to groups of Weil divisors generating the topology. Groups comprising Cartier divisors define free quotients, whereas ℚ–Cartier divisors define geometric quotients. Each quotient presentation yields homogeneous coordinates. Using homogeneous coordinates, we express quasicoherent sheaves in terms of multigraded modules and describe the set of morphisms into a toric variety.
Segre, Klein, and the Theory of Quadratic Line Complexes
2016
Two of C. Segre’s earliest papers, (Segre 1883a) and (Segre 1884), dealt with the classification of quadratic line complexes, a central topic in line geometry. These papers, the first written together with Gino Loria, were submitted to Felix Klein in 1883 for publication in Mathematische Annalen. Together with the two lengthier works that comprise Segre’s dissertation, (Segre 1883b) and (Segre 1883c), they took up and completed a topic that Klein had worked on a decade earlier (when he was known primarily as an expert on line geometry). Using similar ideas, but a new and freer approach to higher-dimensional geometry, Segre not only refined and widened this earlier work but also gave it a ne…
Faithful representations of left C*-modules
2010
The existence of a faithful modular representation of a left module $$ \mathfrak{X} $$ over a C*-algebra $$ \mathfrak{A}_\# $$ possessing sufficiently many traces is proved.
New Families of Symplectic Runge-Kutta-Nyström Integration Methods
2001
We present new 6-th and 8-th order explicit symplectic Runge-Kutta-Nystrom methods for Hamiltonian systems which are more efficient than other previously known algorithms. The methods use the processing technique and non-trivial flows associated with different elements of the Lie algebra involved in the problem. Both the processor and the kernel are compositions of explicitly computable maps.
Fibred Categories and the Six Functors Formalism
2019
In Section 1, we introduce the basic language used in this book, the so-called premotivic categories and their functoriality. This is an extension of the classical notion of fibered categories. They appear with different categorical structures. In Section2, the language of premotivic categories is specialized to that of triangulated categories and to algebraic geometry. We introduce several axioms of such categories which ultimately will lead to the full six functors formalism. An emphasis is given on the study of the main axioms, with a special care about the so-called localization axiom. Then in Section 3, the general theory of descent is formulated in the language of premotivic model cat…
Tsen–Lang Theory for Cpi-fields
1995
Proper triangular Ga-actions on A^4 are translations
2013
We describe the structure of geometric quotients for proper locally triangulable additve group actions on locally trivial A^3-bundles over a noetherian normal base scheme X defined over a field of characteristic 0. In the case where dim X=1, we show in particular that every such action is a translation with geometric quotient isomorphic to the total space of a vector bundle of rank 2 over X. As a consequence, every proper triangulable Ga-action on the affine four space A^4 over a field of characteristic 0 is a translation with geometric quotient isomorphic to A^3.