Search results for " image processing"
showing 10 items of 2323 documents
Innovation and The Evolution of the Economic Web
2019
Fifty thousand years ago the global economy may have had a diversity of a few thousand goods and services, including fire, unifacial stone scrapers, hides, and so forth [...]
Spurious source generation in mapping from noisy phase-self-calibrated data
2008
Phase self-calibration (or selfcal) is an algorithm often used in the calibration of interferometric observations in astronomy. Although a powerful tool, this algorithm presents strong limitations when applied to data with a low signal-to-noise ratio. We analyze the artifacts that the phase selfcal algorithm produces when applied to extremely noisy data. We show how the phase selfcal may generate a spurious source in the sky from a distribution of completely random visibilities. This spurious source is indistinguishable from a real one. We numerically and analytically compute the relationship between the maximum spurious flux density generated by selfcal from noise and the particulars of th…
Automated approach for indirect immunofluorescence images classification based on unsupervised clustering method
2018
Autoimmune diseases (ADs) are a collection of many complex disorders of unknown aetiology resulting in immune responses to self-antigens and are thought to result from interactions between genetic and environmental factors. ADs collectively are amongst the most prevalent diseases in the U.S., affecting at least 7% of the population. The diagnosis of ADs is very complex, the standard screening methods provides seeking and recognizing of Antinuclear Antibodies (ANA) by Indirect ImmunoFluorescence (IIF) based on HEp-2 cells. In this paper an automatic system able to identify and classify the Centromere pattern is presented. The method is based on the grouping of centromeres present on the cell…
Optical tomography from focus
2007
A model and a method providing a 3D reconstruction of a given translucent object from a series of image acquisitions performed with various focus tunings is proposed. The object is imaged by transmission; refraction, reflection and diffusion effects are neglected. It is modeled as a stack of translucent parallel slices and the acquisition process can be described by a set of linear equations. We propose an efficient inversion technique with O(n) complexity, allowing practical applications with a simple laptop computer in a very reasonable time. Examples of results obtained with a simulated 3D translucent object are presented and discussed.
Multi axis representation and Euclidean distance of muscle fatigue indexes during evoked contractions
2014
International audience; In this article, we proposed a new representation of muscular fatigue during evoked muscle contractions based on fatigue indexes such as peak to peak amplitude, RMS of the M wave, mean and median frequency and fatigue index calculated from continuous wavelet transform (I CWT). These new representations of muscle fatigue using multi axis represented and Euclidean distance give better insights on changes in physiological characteristics during muscle fatigue. This technique provides a fatigue index using several muscle characteristics. The use of other kinds of fatigue characteristics as force could also be possible.
Digital Acquisition and Processing of Video Angiocardiograms
1986
Angiocardiographic diagnosis is still mainly based on the visual assessment of radiographic projection images recorded on photographic film. Considerable amounts of contrast material have to be selectively injected into the circulation in order to make the regions of diagnostic relevance visible in the superposition of the shadows of tissue and bone structures displayed in these transmission images. In addition, selective angiocardiography requires exact positioning of the catheter, a time-consuming procedure which is not without risk. The processing of the angiographie films obtained is difficult to maintain at a constant high quality level, and this introduces an disadvantageous delay bet…
Increasing Stability of EEG Components Extraction Using Sparsity Regularized Tensor Decomposition
2018
Tensor decomposition has been widely employed for EEG signal processing in recent years. Constrained and regularized tensor decomposition often attains more meaningful and interpretable results. In this study, we applied sparse nonnegative CANDECOMP/PARAFAC tensor decomposition to ongoing EEG data under naturalistic music stimulus. Interesting temporal, spectral and spatial components highly related with music features were extracted. We explored the ongoing EEG decomposition results and properties in a wide range of sparsity levels, and proposed a paradigm to select reasonable sparsity regularization parameters. The stability of interesting components extraction from fourteen subjects’ dat…
A boosting approach for prostate cancer detection using multi-parametric MRI
2015
International audience; Prostate cancer has been reported as the second most frequently diagnosed men cancers in the world. In the last decades, new imaging techniques based on MRI have been developed in order to improve the diagnosis task of radiologists. In practise, diagnosis can be affected by multiple factors reducing the chance to detect potential lesions. Computer-aided detection and computer-aided diagnosis have been designed to answer to these needs and provide help to radiologists in their daily duties. In this study, we proposed an automatic method to detect prostate cancer from a per voxel manner using 3T multi-parametric Magnetic Resonance Imaging (MRI) and a gradient boosting …
3D reconstruction techniques made easy: know-how and pictures
2005
Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.
Ventricular Fibrillation detection using time-frequency and the KNN classifier without parameter extraction
2017
[ES] Este trabajo propone la detección de FV y su discriminación de TV y otros ritmos cardiacos basándose en la representación tiempo-frecuencia del ECG y su conversión en imágen como entrada a un clasificador de vecinos más cercanos (KNN) sin necesidad de extracción de parámetros adicionales. Tres variantes de datos de entrada al clasificador son evaluados. Los resultados clasifican la señal en cuatro clases diferentes: ’Normal’ para latidos con ritmo sinusal, ’FV’ para fibrilación ventricular, ’TV’ para taquicardia ventricular y ’Otros’ para el resto de ritmos. Los resultados para detección de FV mostraron 88,27% de sensibilidad y 98,22% de especificidad para la entrada de imágen equivale…