Search results for " immunoprecipitation"

showing 10 items of 96 documents

cis-Regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentro…

2008

AbstractEmbryonic development is coordinated by networks of evolutionary conserved regulatory genes encoding transcription factors and components of cell signalling pathways. In the sea urchin embryo, a number of genes encoding transcription factors display territorial restricted expression. Among these, the zygotic Hbox12 homeobox gene is transiently transcribed in a limited number of cells of the animal-lateral half of the early Paracentrotus lividus embryo, whose descendants will constitute part of the ectoderm territory. To obtain insights on the regulation of Hbox12 expression, we have explored the cis-regulatory apparatus of the gene. In this paper, we show that the intergenic region …

Chromatin ImmunoPrecipitationDNA ComplementaryEmbryo Nonmammaliananimal structuresGreen Fluorescent ProteinsMolecular Sequence DataSettore BIO/11 - Biologia MolecolareEctodermHomeodomainMybBiologyOtxEctoderm specificationHomeobox cis-regulatory elements GFP sea urchinEctodermmedicineAnimalsRegulatory Elements TranscriptionalAboral ectodermSea urchin embryoMolecular BiologyGene transferDNA PrimersRegulator geneCis-regulatory moduleHomeodomain ProteinsGeneticsBase SequenceEmbryogenesisGene Expression Regulation DevelopmentalCell Biologycis-Regulatory moduleGastrulationmedicine.anatomical_structureMutagenesisRegulatory sequenceSea Urchinsembryonic structuresSoxHomeoboxSequence AlignmentDevelopmental BiologyDevelopmental Biology
researchProduct

Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3 + regulatory T cells

2012

Several lines of evidence suggest nuclear factor of activated T-cells (NFAT) to control regulatory T cells: thymus-derived naturally occurring regulatory T cells (nTreg) depend on calcium signals, the Foxp3 gene harbors several NFAT binding sites, and the Foxp3 (Fork head box P3) protein interacts with NFAT. Therefore, we investigated the impact of NFAT on Foxp3 expression. Indeed, the generation of peripherally induced Treg (iTreg) by TGF-β was highly dependent on NFAT expression because the ability of CD4 + T cells to differentiate into iTreg diminished markedly with the number of NFAT family members missing. It can be concluded that the expression of Foxp3 in TGF-β–induced iTreg depends…

Chromatin ImmunoprecipitationAdoptive cell transferT-LymphocytesImmunoblottingFluorescent Antibody TechniqueLymphocyte ActivationT-Lymphocytes RegulatoryAutoimmune DiseasesProinflammatory cytokineMiceTransforming Growth Factor betaAnimalsHumansHomeodomain ProteinsMultidisciplinaryNFATC Transcription FactorsbiologyFOXP3Forkhead Transcription FactorsNFATTransforming growth factor betaBiological SciencesColitisFlow CytometryNFATC Transcription FactorsAdoptive TransferMolecular biologyCell biologyTransplantationCyclosporinebiology.proteinChromatin immunoprecipitationProceedings of the National Academy of Sciences
researchProduct

EphrinB2 controls vessel pruning through STAT1-JNK3 signalling

2014

Angiogenesis produces primitive vascular networks that need pruning to yield hierarchically organized and functional vessels. Despite the critical importance of vessel pruning to vessel patterning and function, the mechanisms regulating this process are not clear. Here we show that EphrinB2, a well-known player in angiogenesis, is an essential regulator of endothelial cell death and vessel pruning. This regulation depends upon phosphotyrosine-EphrinB2 signalling repressing c-jun N-terminal kinase 3 activity via STAT1. JNK3 activation causes endothelial cell death. In the absence of JNK3, hyaloid vessel physiological pruning is impaired, associated with abnormal persistence of hyaloid vessel…

Chromatin ImmunoprecipitationCell SurvivalAngiogenesisImmunoblottingRegulatorFluorescent Antibody TechniqueNeovascularization PhysiologicGeneral Physics and AstronomyEphrin-B2Persistent Hyperplastic Primary VitreousIn Vitro TechniquesBiologyBioinformaticsMicrophthalmiaArticleGeneral Biochemistry Genetics and Molecular BiologyNeovascularizationMiceMitogen-Activated Protein Kinase 10Human Umbilical Vein Endothelial CellsmedicineAnimalsHumansImmunoprecipitationInvolution (medicine)Pruning (decision trees)Cell ProliferationMice KnockoutMultidisciplinaryNeovascularization PathologicfungiEndothelial CellsRetinal VesselsGeneral ChemistryFlow Cytometrymedicine.diseaseCell biologyEndothelial stem cellSTAT1 Transcription Factornervous systemPersistent hyperplastic primary vitreousGene Knockdown Techniquescardiovascular systemmedicine.symptomSignal TransductionNature Communications
researchProduct

TFIIH Operates through an Expanded Proximal Promoter To Fine-Tune c-myc Expression

2004

A continuous stream of activating and repressing signals is processed by the transcription complex paused at the promoter of the c-myc proto-oncogene. The general transcription factor IIH (TFIIH) is held at promoters prior to promoter escape and so is well situated to channel the input of activators and repressors to modulate c-myc expression. We have compared cells expressing only a mutated p89 (xeroderma pigmentosum complementation group B [XPB]), the largest TFIIH subunit, with the same cells functionally complemented with the wild-type protein (XPB/wt-p89). Here, we show structural, compositional, and functional differences in transcription complexes between XPB and XPB/wt-89 cells at t…

Chromatin ImmunoprecipitationDNA ComplementaryCell SurvivalUltraviolet RaysBlotting WesternGreen Fluorescent ProteinsGene ExpressionRepressorCellular homeostasisBiologyTransfectionModels BiologicalProto-Oncogene MasProto-Oncogene Proteins c-mycTranscription Factors TFIIRibonucleasesPotassium PermanganateTranscription (biology)HumansRNA MessengerPromoter Regions GeneticMolecular BiologyModels GeneticGeneral transcription factorCell CycleGenetic Complementation TestDNA HelicasesPromoterCell BiologyFibroblastsFlow CytometryMolecular biologyDNA-Binding ProteinsKineticsTranscription Factor TFIIHMicroscopy FluorescenceMutationTranscription preinitiation complexTranscription factor II HTranscription Factor TFIIHPlasmidsMolecular and Cellular Biology
researchProduct

Chromatin dynamics of the developmentally regulated P. lividus neural alpha tubulin gene

2011

Over 40 years ago, Allfrey and colleagues (1964) suggested that two histone modifications, namely acetylation and methylation, might regulate RNA synthesis. Nowadays it is universally accepted that activation of gene expression strictly depends on enzymatic mechanisms able to dynamically modify chromatin structure. Here, using techniques including DNaseI hypersensitive site analysis, chomatin immunoprecipitation and quantitative PCR analysis, we have analyzed the dynamics of histone post-translation modifications involved in developmentally/spatially controlled activation of the sea urchin PlTalpha2 tubulin gene. We have demonstrated that only when the PlTalpha2 core promoter chromatin is a…

Chromatin ImmunoprecipitationEmbryologyRNA polymerase IISettore BIO/11 - Biologia MolecolareMethylationNervous SystemHistone DeacetylasesHistonesTubulinGene expressionAnimalsParacentrotus lividus chromatin modification epigenetic reprogramming nervous systemPromoter Regions GeneticHistone AcetyltransferasesEpigenomicsHistone DemethylasesbiologyGene Expression Regulation DevelopmentalAcetylationPromoterHistone-Lysine N-MethyltransferaseMolecular biologyChromatinChromatinCell biologyHistoneAcetylationHistone MethyltransferasesParacentrotusbiology.proteinRNA Polymerase IIProtein Processing Post-TranslationalHypersensitive siteDevelopmental Biology
researchProduct

Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells

2009

Epigenetic mechanisms that maintain neurogenesis throughout adult life remain poorly understood(1). Trithorax group (trxG) and Polycomb group (PcG) gene products are part of an evolutionarily conserved chromatin remodelling system that activate or silence gene expression, respectively(2). Although PcG member Bmi1 has been shown to be required for postnatal neural stem cell self-renewal(3,4), the role of trxG genes remains unknown. Here we show that the trxG member Mll1 (mixed-lineage leukaemia 1) is required for neurogenesis in the mouse postnatal brain. Mll1-deficient subventricular zone neural stem cells survive, proliferate and efficiently differentiate into glial lineages; however, neur…

Chromatin ImmunoprecipitationEpigenetic regulation of neurogenesisCell SurvivalNeurogenesisCellular differentiationSubventricular zoneNerve Tissue ProteinsBiologyMethylationArticleHistonesMiceBasic Helix-Loop-Helix Transcription FactorsmedicineAnimalsCell LineageCells CulturedCell ProliferationGliogenesisHomeodomain ProteinsNeuronsMultidisciplinaryStem CellsNeurogenesisCell DifferentiationHistone-Lysine N-MethyltransferaseOligodendrocyte Transcription Factor 2Chromatin Assembly and DisassemblyOlfactory BulbMolecular biologyChromatinNeural stem cellCell biologyChromatinmedicine.anatomical_structureAnimals NewbornStem cellNeurogliaMyeloid-Lymphoid Leukemia ProteinTranscription Factors
researchProduct

The Sea Urchin sns5 Insulator Protects Retroviral Vectors From Chromosomal Position Effects by Maintaining Active Chromatin Structure

2009

Silencing and position-effect (PE) variegation (PEV), which is due to integration of viral vectors in heterochromatin regions, are considered significant obstacles to obtaining a consistent level of transgene expression in gene therapy. The inclusion of chromatin insulators into vectors has been proposed to counteract this position-dependent variegation of transgene expression. Here, we show that the sea urchin chromatin insulator, sns5, protects a recombinant gamma-retroviral vector from the negative influence of chromatin in erythroid milieu. This element increases the probability of vector expression at different chromosomal integration sites, which reduces both silencing and PEV. By chr…

Chromatin ImmunoprecipitationEuchromatinHeterochromatinGenetic VectorsSettore BIO/11 - Biologia MolecolareSettore MED/08 - Anatomia PatologicaBiologyChromatin remodelingChromosomal Position EffectsMiceCell Line TumorDrug DiscoveryGeneticsAnimalsNucleosomeGATA1 Transcription FactorPosition EffectChromatin insulatorMolecular BiologyChIA-PETGeneticsPharmacologyChromatin insulator; Position Effects; Histone modificationsHistone modificationsChromosomal Position EffectsOriginal ArticlesChromatinChromatinRetroviridaeSea UrchinsNIH 3T3 CellsMolecular MedicineInsulator ElementsChromatin immunoprecipitationOctamer Transcription Factor-1Protein BindingMolecular Therapy
researchProduct

p53-Mediated downregulation of H ferritin promoter transcriptional efficiency via NF-Y.

2008

The tumor suppressor protein p53 triggers many of the cellular responses to DNA damage by regulating the transcription of a series of downstream target genes. p53 acts on the promoter of the target genes by interacting with the trimeric transcription factor NF-Y. H ferritin promoter activity is tightly dependent on a multiprotein complex called Bbf; on this complex NF-Y plays a major role. The aim of this work was to study the modulation of H ferritin expression levels by p53. CAT reporter assays indicate that: (i) p53 overexpression strongly downregulates the transcriptional efficiency driven by an H ferritin promoter construct containing only the NF-Y recognition sequence and that the phe…

Chromatin ImmunoprecipitationMultiprotein complexTranscription GeneticDown-RegulationBiologyBiochemistryTranscriptional regulationDownregulation and upregulationTranscription (biology)Transcriptional regulationFerritin geneHumansElectrophoretic mobility shift assayp300-CBP Transcription FactorsPromoter Regions GeneticTranscription factorGeneFerritin gene; Transcriptional regulation; Transcriptional factorCell BiologyHCT116 CellsMolecular biologyGene Expression Regulation NeoplasticCCAAT-Binding FactorDoxorubicinTranscriptional factorApoferritinsTumor Suppressor Protein p53Chromatin immunoprecipitationHeLa CellsProtein Binding
researchProduct

Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex

2008

SummarySatb2 is a DNA-binding protein that regulates chromatin organization and gene expression. In the developing brain, Satb2 is expressed in cortical neurons that extend axons across the corpus callosum. To assess the role of Satb2 in neurons, we analyzed mice in which the Satb2 locus was disrupted by insertion of a LacZ gene. In mutant mice, β-galactosidase-labeled axons are absent from the corpus callosum and instead descend along the corticospinal tract. Satb2 mutant neurons acquire expression of Ctip2, a transcription factor that is necessary and sufficient for the extension of subcortical projections by cortical neurons. Conversely, ectopic expression of Satb2 in neural stem cells m…

Chromatin ImmunoprecipitationNeuroscience(all)Electrophoretic Mobility Shift AssayMice TransgenicNerve Tissue ProteinsDEVBIOBiologyCorpus callosumMOLNEUROMiceNeural PathwaysmedicineAnimalsCells CulturedCerebral CortexNeuronsRegulation of gene expressionStem CellsGeneral NeuroscienceGene Expression Regulation DevelopmentalMatrix Attachment Region Binding ProteinsDNAEmbryo MammalianNeural stem cellChromatinmedicine.anatomical_structureAnimals NewbornBromodeoxyuridinenervous systemCerebral cortexRegulatory sequenceMutationCorticospinal tractEctopic expressionNeuroscienceTranscription Factors
researchProduct

The inner nuclear membrane protein Src1 associates with subtelomeric genes and alters their regulated gene expression

2008

Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Δ cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice an…

Chromatin ImmunoprecipitationSaccharomyces cerevisiae ProteinsGenes FungalSaccharomyces cerevisiaeProtein Sorting SignalsBiologyArticleGenètica molecularProton-Phosphate SymportersGene Expression Regulation FungalGene expressionmedicineExpressió genèticaInner membraneNuclear proteinNuclear poreNuclear membraneResearch ArticlesNucleoplasmMembrane ProteinsNuclear ProteinsCell BiologyTelomereMolecular biologyChromatinProtein Structure TertiaryChromatinAlternative SplicingGenòmicamedicine.anatomical_structureMultiprotein ComplexesNuclear lamina
researchProduct