Search results for " materia"
showing 10 items of 18071 documents
Investigation of mechanical and electrical properties of Li doped sodium niobate ceramic system
2016
ABSTRACTThe Na0.96Li0.04NbO3 ceramic solid solution was prepared by means of a two-stage hot-pressing technology. The X-ray diffraction analysis showed the formation of a single perovskite phase with an orthorhombic symmetry in the investigated composition. The microstructure and EDS measurements were performed. They confirmed the high purity and the expected qualitative composition. A good homogeneity of the microstructures and a small degree of porosity were observed. The elastic modulus (the Young's modulus E, shear modulus G, and Poisson's ratio ν) of Na0.96Li0.04NbO3 were determined with the use of an ultrasonic method. The electrical properties of Na0.96Li0.04NbO3 ceramics were invest…
Long-term moisture absorption and durability of FRP pultruded rebars
2021
Abstract Up to 15-years long moisture diffusion into carbon, glass, and aramid fiber reinforced plastic (FRP) rebars is studied. To eliminate uncertainties in identification of the radial and axial diffusivities, a successive methodology for determination of the diffusion coefficients is proposed. The concept of apparent diffusivity taking into account anisotropy and edge effects is extended to cylindrical samples. The ratio of the axial and radial diffusivities is the lowest for carbon (3) and the highest for glass (81) FRP rebars. Durability performance of the rebars is estimated by monitoring their interlaminar shear strength (ILSS). Long-term exposure of FRP rebars in a humid environmen…
Preparation and Characterization of Nanocrystalline Gadolinium Oxide Powders and Films
2020
Due to its magnetic, electrical, absorption, and emission properties, nanoscale gadolinium oxide is widely used in various fields. In this research, nanocrystalline Gd2O3 powders and films on glass substrates have been produced by the extraction-pyrolytic method. X-ray diffraction analysis revealed the formation of single phase Gd2O3 with cubic crystal structure and the mean crystallite size from 9 to 25 nm in all produced materials. The morphology of samples has been characterized by scanning electron microscopy and transmission electron microscopy.
Molecular dynamics simulations of nanometric metallic multilayers: Reactivity of the Ni-Al system
2011
The reactivity of a layered Ni-Al-Ni system is studied by means of molecular dynamics simulations, using an embedded-atom method type potential. The system, made of an fcc-Al layer embedded in fcc-Ni, is initially thermalized at the fixed temperature of 600 K. The early interdiffusion of Ni and Al at interfaces is followed by the massive diffusion of Ni in the Al layer and by the spontaneous phase formation of $B2$-NiAl. The solid-state reaction is associated with a rapid system heating, which further enhances the diffusion processes. For longer times, the system may partly lose some its $B2$-NiAl microstructure in favor of the formation of $L{1}_{2}$-${\mathrm{Ni}}_{3}\mathrm{Al}$. This st…
Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.
2019
Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…
An investigation into the fracture behaviour of honeycombs with density gradients
2020
International audience; In this study we perform an experimental and computational investigation about the fracture behaviour of polymer honeycombs presenting gradients in terms of lattice density. Such lattice relative density variations are introduced with the aim of mimicking the micro-morphology encountered in some natural materials, such as several kinds of woods, which seems related to the ability of the corresponding macro-material to delay the propagation of fracture under certain conditions. Starting from the conclusions of previous computational analyses, we perform a few experimental tensile tests on ABS model honeycombs obtained by additive manufacturing, with the aim of getting…
Performance evaluation and stability of silicide-based thermoelectric modules
2020
Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…
Time-resolved pulsed OSL of ceramic YAP:Mn phosphors
2019
The paper deals with the results of comparative study on time-resolved pulsed optically stimulated luminescence (TR-OSL) response of ceramic YAP:Mn materials prepared by different methods. In parti...
Static and dynamic structure of $ZnWO_4$ nanoparticles
2011
Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …
Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…
2019
Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…