Search results for " material"

showing 10 items of 17428 documents

Preparation and Characterization of Nanocrystalline Gadolinium Oxide Powders and Films

2020

Due to its magnetic, electrical, absorption, and emission properties, nanoscale gadolinium oxide is widely used in various fields. In this research, nanocrystalline Gd2O3 powders and films on glass substrates have been produced by the extraction-pyrolytic method. X-ray diffraction analysis revealed the formation of single phase Gd2O3 with cubic crystal structure and the mean crystallite size from 9 to 25 nm in all produced materials. The morphology of samples has been characterized by scanning electron microscopy and transmission electron microscopy.

010302 applied physicsMaterials scienceMorphology (linguistics)Mechanical Engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesNanocrystalline materialCharacterization (materials science)Chemical engineeringMechanics of MaterialsLiquid–liquid extraction0103 physical sciencesGeneral Materials ScienceGadolinium oxide0210 nano-technologyPyrolysisKey Engineering Materials
researchProduct

Molecular dynamics simulations of nanometric metallic multilayers: Reactivity of the Ni-Al system

2011

The reactivity of a layered Ni-Al-Ni system is studied by means of molecular dynamics simulations, using an embedded-atom method type potential. The system, made of an fcc-Al layer embedded in fcc-Ni, is initially thermalized at the fixed temperature of 600 K. The early interdiffusion of Ni and Al at interfaces is followed by the massive diffusion of Ni in the Al layer and by the spontaneous phase formation of $B2$-NiAl. The solid-state reaction is associated with a rapid system heating, which further enhances the diffusion processes. For longer times, the system may partly lose some its $B2$-NiAl microstructure in favor of the formation of $L{1}_{2}$-${\mathrm{Ni}}_{3}\mathrm{Al}$. This st…

010302 applied physicsMaterials scienceNanotechnology02 engineering and technologyType (model theory)021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectronic Optical and Magnetic MaterialsMetalMolecular dynamicsChemical physicsvisual_artPhase (matter)0103 physical sciencesvisual_art.visual_art_medium[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Reactivity (chemistry)PACS: 64.70.Nd 02.70.Ns 68.35.bdDiffusion (business)0210 nano-technologyLayer (electronics)
researchProduct

Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.

2019

Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…

010302 applied physicsMaterials scienceNanowireGeneral Physics and Astronomy02 engineering and technologyCell BiologyBendingEdge (geometry)021001 nanoscience & nanotechnology01 natural sciencesFinite element methodStructural BiologyIndentation0103 physical sciencesGeneral Materials ScienceWaferComposite materialDeformation (engineering)0210 nano-technologyElastic modulusMicron (Oxford, England : 1993)
researchProduct

An investigation into the fracture behaviour of honeycombs with density gradients

2020

International audience; In this study we perform an experimental and computational investigation about the fracture behaviour of polymer honeycombs presenting gradients in terms of lattice density. Such lattice relative density variations are introduced with the aim of mimicking the micro-morphology encountered in some natural materials, such as several kinds of woods, which seems related to the ability of the corresponding macro-material to delay the propagation of fracture under certain conditions. Starting from the conclusions of previous computational analyses, we perform a few experimental tensile tests on ABS model honeycombs obtained by additive manufacturing, with the aim of getting…

010302 applied physicsMaterials scienceNatural materials020502 materialsAdditive ManufacturingComputational Mechanics02 engineering and technologyMechanics[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph]01 natural sciencesFracture MechanicFinite element method[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Fracture toughnessLattice Material0205 materials engineeringHomogeneousLattice (order)0103 physical sciencesUltimate tensile strength[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]Fracture (geology)[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Relative densitySettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

Performance evaluation and stability of silicide-based thermoelectric modules

2020

Abstract Long-term studies on thermoelectric generators based on N-type magnesium silicide (Mg2.01Si0.49Sn0.5Sb0.01) and P-type higher manganese silicide (Mn0.98Mo0.02Si1.73Ge0.02) materials are presented, in the operating temperature range of 200 °C–400 °C. Emphasis is put on the performance and reliability of the current collector configuration, especially on the hot side of the module, and on the thermomechanical stresses that are created during operation and lifetime testing as a result of large temperature gradients experienced across the thermoelectric legs. With silver (Ag) paste as contact material, the long term-stability of the uni-couples was carried out on non-metalized legs and…

010302 applied physicsMaterials scienceOpen-circuit voltage02 engineering and technologyInternal resistanceCurrent collector021001 nanoscience & nanotechnologyMagnesium silicide01 natural sciencesIsothermal processVDP::Teknologi: 500::Elektrotekniske fag: 540chemistry.chemical_compoundThermoelectric generatorchemistry0103 physical sciencesThermoelectric effectSilicideComposite material0210 nano-technology
researchProduct

Time-resolved pulsed OSL of ceramic YAP:Mn phosphors

2019

The paper deals with the results of comparative study on time-resolved pulsed optically stimulated luminescence (TR-OSL) response of ceramic YAP:Mn materials prepared by different methods. In parti...

010302 applied physicsMaterials scienceOptically stimulated luminescencebusiness.industryPhosphor02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsControl and Systems Engineeringvisual_art0103 physical sciencesThermoluminescent DosimetryMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumOptoelectronicsCeramicElectrical and Electronic Engineering0210 nano-technologybusinessIntegrated Ferroelectrics
researchProduct

Static and dynamic structure of $ZnWO_4$ nanoparticles

2011

Abstract Static and dynamic structure of ZnWO 4 nanoparticles, synthesized by co-precipitation technique, has been studied by temperature dependent x-ray absorption spectroscopy at the Zn K-edge and W L 3 -edge. Complementary experimental techniques, such as x-ray powder diffraction, Raman and photoluminescence spectroscopies, have been used to understand the variation of vibrational, optical, and structural properties of nanoparticles, compared to microcrystalline ZnWO 4 . Our results indicate that the structure of nanoparticles experiences strong relaxation leading to the significant distortions of the WO 6 and ZnO 6 octahedra, being responsible for the changes in optical and vibrational …

010302 applied physicsMaterials sciencePhotoluminescenceAbsorption spectroscopyExtended X-ray absorption fine structureAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic Materialssymbols.namesakeMicrocrystalline0103 physical sciencesX-ray crystallographyMaterials ChemistryCeramics and Compositessymbolsddc:6600210 nano-technologyRaman spectroscopyPowder diffraction
researchProduct

Outstanding nonlinear optical properties of methylammonium- and Cs-PbX3 (X = Br, I, and Br–I) perovskites: Polycrystalline thin films and nanoparticl…

2019

Metal Halide Perovskites (MHPs) have arisen as promising materials to construct cost-effective photovoltaic and light emission devices. The study of nonlinear optical properties of MHPs is necessary to get similar success in nonlinear photonic devices, which is practically absent in the literature. The determination of the third order nonlinear coefficients is typically done by the Z-scan technique, which is limited by the scattering of polycrystalline thin films. In this work, we have studied nonlinear optical properties of polycrystalline CH3NH3PbX3 (MAPbX3) thin films and colloidal CsPbX3 nanoparticles with three different bandgaps (X3 = I3, Br3, and Br1.5I1.5). Their bright generation o…

010302 applied physicsMaterials sciencePhotoluminescenceInfraredbusiness.industryScatteringBand gaplcsh:BiotechnologyGeneral Engineering02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences7. Clean energylcsh:QC1-999lcsh:TP248.13-248.650103 physical sciencesOptoelectronicsGeneral Materials ScienceLight emissionPhotonicsThin film0210 nano-technologybusinessAbsorption (electromagnetic radiation)lcsh:PhysicsAPL Materials
researchProduct

Comparing the luminescence processes of YVO4:Eu and core-shell YVO4@YF3 nanocrystals with bulk-YVO4:Eu

2017

Abstract Comparative analysis of bulk, non-coated and core-shelled nanocrystalline YVO4:Eu was performed by means of time-resolved luminescence and VUV excitation luminescence spectroscopy techniques. Nanocrystalline YVO4:Eu samples – both as-prepared and YF3 core-shelled – have been synthesized by means of a microwave-assisted synthesis in ionic liquids, which allows to obtain 10–12 nm nanoparticles with high crystallinity. The results show noticeable differences between bulk and nanocrystalline YVO4:Eu in photoluminescence experimental data, which explains by influence of the nanocrystal surface. A YF3 core-shell layer around YVO4:Eu nanoparticles partially recovers the intensity of the E…

010302 applied physicsMaterials sciencePhotoluminescencePassivationAnalytical chemistryNanoparticle02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesNanocrystalline materialElectronic Optical and Magnetic MaterialsCrystallinityNanocrystal0103 physical sciencesElectrical and Electronic Engineering0210 nano-technologyLuminescenceSpectroscopyPhysica B: Condensed Matter
researchProduct

Rhodamine (B) photocatalysis under solar light on high crystalline ZnO films grown by home-made DC sputtering

2018

Abstract ZnO thin films were deposited by home-made DC sputtering of zinc target under mixed gases (Argon, Oxygen) plasma on glass substrates. Films were deposited by varying oxygen partial pressure (PO2) from 0.09 to 1.3 mbar in the deposition chamber, at a fixed substrate temperature of 100 °C. The samples were characterized by photoluminescence (PL), X-ray diffraction (XRD), optical transmissions (UV–vis), scanning electron microscopy (SEM) and electrical (Hall effect) measurements. The results indicate that by varying the oxygen pressure in the deposition chamber, the films show a precise and well defined photoluminescence emissions for each range of pressure covering almost the entire …

010302 applied physicsMaterials sciencePhotoluminescenceZnO thin films Sputtering Photoluminescence Rhodamine (B) Solar light PhotocatalysisScanning electron microscopeBand gapAnalytical chemistry02 engineering and technologySubstrate (electronics)021001 nanoscience & nanotechnology01 natural sciencesSettore ING-INF/01 - ElettronicaAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistrySputtering0103 physical sciencesPhotocatalysisRhodamine BElectrical and Electronic EngineeringThin film0210 nano-technology
researchProduct