Search results for " mesenchymal stem cells."
showing 10 items of 60 documents
Wharton’s Jelly Mesenchymal Stem Cells as Candidates for Beta Cells Regeneration: Extending the Differentiative and Immunomodulatory Benefits of Adul…
2010
Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in …
Human Wharton's jelly-derived mesenchymal stem cells express several immunomodulatory molecules both in their naïve state and hepatocyte-like differe…
2011
Wharton’s jelly (WJ), the main constituent of umbilical cord, is a reliable source of mesenchymal stem cells (MSC). WJ-MSC show unique ability in crossing lineage borders. As other extraembryonic mesenchymal populations (placenta and amnionderived cells), WJ-MSC express several immunomodulatory molecules, essential during the initial phases of human development. Indeed, our recent work pointed out the expression of non-classical HLA molecules as HLA-G in such cells, together with a favorable combination of B7 costimulators. Very few data in literature suggest that some of the immune features of the naïve cells are maintained after performing differentiation. The aim of this work was extendi…
Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of n…
2008
The presence of multipotent cells in several adult and embryo-related tissues opened new paths for their use in regenerative medicine. Extraembryonic tissues such as umbilical cord are considered a promising source of stem cells, potentially useful in therapy. The characterization of cells from the umbilical cord matrix (Wharton''s Jelly) and amniotic membrane revealed the presence of a population of mesenchymal-like cells, sharing a set of core-markers expressed by "mesenchymal stem cells". Several reports enlightened the differentiation capabilities of these cells, even if at times the lack of an extensive characterization of surface markers and immune co-stimulators expression revealed h…
Immune-related molecole are espresse by both naive and differentiated Wharton’s jelly mesenchymal stem cells: a new avenue for cellular therapy
2012
Recent patents and advances on isolation and cellular therapy applications of mesenchymal stem cells from human umbilical cord Wharton's jelly
2011
In recent years, important advances were made to clarify the biology and potential use of mesenchymal stem cells (MSC) in the therapy of a number of disorders. MSC are present in a number of tissues, ranging from adult bone marrow, to several adult organs, adipose tissue and, in the last years, the fetal-associated (also named as extraembryonic) tissues (e.g. placenta, amniotic membrane, umbilical cord). In particular, research on cells derived from mature umbilical cord, a tissue which is still discarded at birth, showed that mesenchymal stem cells can be successfully isolated from the Wharton’s jelly (WJ), the main constituent of this organ. This review will take in to account the patents…
Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: a potential application for bone formation
2017
Background Chronic periodontal disease is an infectious disease consisting of prolonged inflammation of the supporting tooth tissue and resulting in bone loss. Guided bone regeneration procedures have become common and safe treatments in dentistry, and in this context dental stem cells would represent the ideal solution as autologous cells. In this study, we verified the ability of dental pulp mesenchymal stem cells (DPSCs) and gingival mesenchymal stem cells (GMSCs) harvested from periodontally affected teeth to produce new mineralized bone tissue in vitro, and compared this to cells from healthy teeth. Methods To characterize DPSCs and GMSCs, we assessed colony-forming assay, immunophenot…
Cycloastragenol as an Exogenous Enhancer of Chondrogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. A Morphological Study
2020
Stem cell therapy and tissue engineering represent a promising approach for cartilage regeneration. However, they present limits in terms of mechanical properties and premature de-differentiation of engineered cartilage. Cycloastragenol (CAG), a triterpenoid saponin compound and a hydrolysis product of the main ingredient in Astragalus membranaceous, has been explored for cartilage regeneration. The aim of this study was to investigate CAG&rsquo
Amnion-Derived Mesenchymal Stromal/Stem Cell Paracrine Signals Potentiate Human Liver Organoid Differentiation: Translational Implications for Liver …
2021
The prevalence of end-stage liver diseases has reached very high levels globally. The election treatment for affected patients is orthotopic liver transplantation, which is a very complex procedure, and due to the limited number of suitable organ donors, considerable research is being done on alternative therapeutic options. For instance, the use of cell therapy, such as the transplantation of hepatocytes to promote liver repair/regeneration, has been explored, but standardized protocols to produce suitable human hepatocytes are still limited. On the other hand, liver progenitor and multipotent stem cells offer potential cell sources that could be used clinically. Different studies have rep…
Human exfoliated deciduous teeth and oral mucosa: promising applications in tissue regeneration
2018
In the last three decades, the constantly increasing need for therapies, efficiently preventing and/or treating human diseases, has raised the interest in Regenerative Medicine (RM). RM is based on employing mesenchymal stem cells (MSCs), that showed to have great proliferation, self-renewal and multilineage differentiation potential, in vitro as well as in vivo. The opportunity of an accessible, painless and low-cost reservoir of MSCs constitutes the first important step of a successful regenerative therapy to include in the current clinical practice. Oral cavity has recently demonstrated to contain different MSCs niches: dental pulp from permanent and deciduous teeth, periodontal ligament…