Search results for " metallurgy"

showing 10 items of 97 documents

One-step electrodeposition of superhydrophobic coating on 316L stainless steel

2021

Superhydrophobic coatings were fabricated through a one-step electrochemical process onto the surface of 316L stainless steel samples. The presence of hierarchical structures at micro/nanoscale and manganese stearate into the coatings gave superhydrophobicity to the coating, with contact angle of ~160°, and self-cleaning ability. Corrosion resistance of 316L samples was also assessed also after the electrodeposition process through Electrochemical Impedance Spectra recorded in an aqueous solution mimicking seawater condition.

Materials science316L Electrodeposition Self-cleaning Stainless steel Stearic acid superhydrophobicitychemistry.chemical_elementOne-StepManganeseengineering.materialCorrosionContact anglechemistry.chemical_compoundCoatingStearate316LGeneral Materials ScienceComposite materialstainless steelAqueous solutionMining engineering. MetallurgyMetals and AlloysTN1-997stearic acidSuperhydrophobic coatingSettore ING-IND/23 - Chimica Fisica Applicatachemistryengineeringelectrodepositionself-cleaningsuperhydrophobicity
researchProduct

Using a neural network for predicting the average grain size in friction stir welding processes

2009

In the paper the microstructural phenomena in terms of average grain size occurring in friction stir welding (FSW) processes are focused. A neural network was linked to a finite element model (FEM) of the process to predict the average grain size values. The utilized net was trained starting from experimental data and numerical results of butt joints and then tested on further butt, lap and T-joints. The obtained results show the capability of the AI technique in conjunction with the FE tool to predict the final microstructure in the FSW joints.

Materials scienceArtificial neural networkFSW metallurgy neural networksMechanical EngineeringMetallurgyMicrostructureGrain sizeFinite element methodComputer Science ApplicationsLap jointModeling and SimulationButt jointFriction stir weldingGeneral Materials ScienceFriction weldingComposite materialSettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneCivil and Structural Engineering
researchProduct

Thermal-electrical-mechanical simulation of the nickel densification by Spark Plasma Sintering. Comparison with experiments

2016

Abstract Spark Plasma Sintering is a non-conventional process of the powder metallurgy field which uses a high electrical current to rapidly produce fully dense materials. In the present paper, a thermal-electrical-mechanical model developed on ABAQUS Software is proposed to simulate the densification of a nickel disk. A compaction model, studied in [Wolff, C., Mercier, S., Couque, H., Molinari, A., 2012. Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mechanics of Materials 49 (0), 72–91. URL http://www.sciencedirect.com/science/article/pii/S0167663611002195 ], has been used to reproduce the densification of t…

Materials scienceField (physics)CompactionSpark plasma sinteringchemistry.chemical_element02 engineering and technologyNickelPowder metallurgy[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]ThermalForensic engineering[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGeneral Materials ScienceComposite materialInstrumentationSpark Plasma SinteringMicromechanical models020502 materials021001 nanoscience & nanotechnologyStrength of materialsNickel0205 materials engineeringchemistryMechanics of Materials0210 nano-technologyPorous mediumSimulationMechanics of Materials
researchProduct

From nanostructured powders to dense nanostructured materials: Mechanically activated powder metallurgy

2003

Materials scienceNanostructured materialsPowder metallurgyMetallurgyNanomaterials
researchProduct

Powder metallurgy processing and deformation characteristics of bulk multimodal nickel

2014

cited By 7; International audience; Spark plasma sintering was used to process bulk nickel samples from a blend of three powder types. The resulting multimodal microstructure was made of coarse (average size ∼ 135 μm) spherical microcrystalline entities (the core) surrounded by a fine-grained matrix (average grain size ∼ 1.5 μm) or a thick rim (the shell) distinguishable from the matrix. Tensile tests revealed yield strength of ∼ 470 MPa that was accompanied by limited ductility (∼ 2.8% plastic strain). Microstructure observation after testing showed debonding at interfaces between the matrix and the coarse entities, but in many instances, shallow dimples within the rim were observed indica…

Materials sciencePlasticityEBSDFlow stressDeformation CharacteristicsNickelPowder metallurgyPowder metallurgyGeneral Materials ScienceIn-situ TEMMicrostructureMicrostructure observationCrack tips[PHYS]Physics [physics][ PHYS ] Physics [physics]Deformation mechanismMechanical EngineeringMetallurgySpark plasma sinteringNickel powder metallurgyCondensed Matter PhysicsMicrostructureGrain sizeDeformationIn-situ transmission electron microscopiesDeformation mechanismMechanics of MaterialsMulti-modalGrain boundariesGrain boundaryPowder metallurgy processingDeformation (engineering)DislocationTensile testingTransmission electron microscopy
researchProduct

Large scale electromagnetic levitation melting of metals

2017

Materials scienceScale (ratio)business.industryMechanical Engineering02 engineering and technologyCondensed Matter Physics01 natural sciences020501 mining & metallurgy010305 fluids & plasmasElectronic Optical and Magnetic Materials0205 materials engineeringMechanics of Materials0103 physical sciencesElectrical and Electronic EngineeringAerospace engineeringbusinessMagnetic levitationInternational Journal of Applied Electromagnetics and Mechanics
researchProduct

Synthesis of niobium aluminides using mechanically activated self-propagating high-temperature synthesis and mechanically activated annealing process

1999

The mechanically activated self-propagating high-temperature synthesis (MASHS) technique and the mechanically activated annealing process (M2AP) were used to produce NbAl3 intermetallic compound. The MASHS process results from the combination of two steps: first, a mechanical activation of the Nb 3Al powders mixture; second, a self-propagating high-temperature synthesis (SHS). The M2AP process also results from the combination of two steps: the first is the same; the second consists of the annealing of as-milled powders. Based on X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDXS), the as-milled powders, MASHS, and M2AP end-pr…

Materials scienceScanning electron microscopeAnnealing (metallurgy)Mechanical EngineeringMetallurgyEnergy-dispersive X-ray spectroscopySelf-propagating high-temperature synthesisIntermetallicCondensed Matter PhysicsMicrostructureChemical engineeringMechanics of MaterialsPowder metallurgyGeneral Materials ScienceBall mill
researchProduct

Physical chemistry of the powder metallurgy of beryllium: Chemical characterization of the powder in relation to its granularity

1996

Combining the systematic quantitative chemical analysis of the light impurities H, C, N, and O, the quantitative thermal desorption of molecular H2O and H2, and X ray diffractometry of various size fractions of a commercial Be powder (SP-65 grade from Brush-Wellman) allowed the precise de-termination of the mean composition and equivalent mean thickness of the surface impurity phases in the passivation-contamination layer on the surface of the particles. The overall surface stoichi-ometry is as follows: 0.2 BeOcrystallized, 0.8 [BeO - 0.59 H2O]amorphous, 0.14 H2Oads The result of the elemental analysis by X-ray photoelectron spectroscopy of the unetched surface of a powder pellet is compare…

Materials scienceX-ray photoelectron spectroscopyMechanics of MaterialsImpurityElemental analysisPowder metallurgyMetals and AlloysIntermetallicAnalytical chemistryMetal powderParticle sizeCondensed Matter PhysicsChemical compositionMetallurgical and Materials Transactions A
researchProduct

Microstructure-oxidation resistance relationship in Ti3AlC2 MAX phase

2020

International audience; Spark Plasma Sintering and Hot Isostatic Pressing were used to synthesize coarse-grained and fine-grained Ti3AlC2 specimens. Moreover, Spark Plasma Sintering processing parameters were modified in order to vary the TiC, Al2O3 and TixAly impurity and the porosity contents in the fine-grained samples. The influence of the Ti3AlC2 microstructure on the oxidation resistance was assesed. It is demonstrated that the grain size can drastically modify the oxidation resistance. The higher density of grain boundaries, in fine-grained specimens, increases the number of Al diffusion paths and leads to the formation of a protective alumina scale. In coarse-grained sample, Al diff…

Materials science[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]OxideSpark plasma sinteringSPS02 engineering and technology010402 general chemistry01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/Automaticchemistry.chemical_compound[SPI]Engineering Sciences [physics][PHYS.QPHY]Physics [physics]/Quantum Physics [quant-ph]Powder metallurgyHot isostatic pressingPowder metallurgyOxidationMaterials Chemistry[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph][PHYS.MECA.BIOM]Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph]Composite materialPorosityMicrostructureComputingMilieux_MISCELLANEOUS[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS.MECA.VIBR]Physics [physics]/Mechanics [physics]/Vibrations [physics.class-ph][SPI.FLUID]Engineering Sciences [physics]/Reactive fluid environmentMechanical Engineering[SPI.NRJ]Engineering Sciences [physics]/Electric powerMetals and Alloys[CHIM.MATE]Chemical Sciences/Material chemistry[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph]021001 nanoscience & nanotechnologyMicrostructureGrain sizeGrain size[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]0104 chemical sciences[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism[CHIM.POLY]Chemical Sciences/PolymerschemistryMechanics of Materials[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]MAX phaseGrain boundary0210 nano-technology
researchProduct

The Role of Formal Education in Developing Critical Thinking Skills of Engineering Students

2020

The hereby paper intends to acknowledge and discuss the concept of critical thinking and the influence of this ability on engineering students. The purpose of this research is to establish the criteria according to which some students think more critically compared to other students in the same field of study. Logic is a term that seems simple, although very few know how to access that logical part of the human brain. This research has shown that the students’ level of critical thinking is not related to the year of study. Therefore, there are no activities in faculties that have a significant influence on the development of critical thinking. Moreover, it has resulted that female participa…

Mining engineering. MetallurgyLogical partComputer scienceTN1-997Focus groupCritical thinking skillsCritical thinkingFormal educationlife fulfilmentMathematics educationgendercumulative grade point averagecritical thinkingKnow-howCumulative grade point averageThe Annals of “Dunarea de Jos” University of Galati. Fascicle IX, Metallurgy and Materials Science
researchProduct