Search results for " microRNAs"

showing 10 items of 44 documents

Vascular ageing and endothelial cell senescence: Molecular mechanisms of physiology and diseases

2016

Ageing leads to a progressive deterioration of structure and function of all organs over the time. During this process endothelial cells undergo senescence and manifest significant changes in their properties, resulting in impairment of the vascular functionality and neo-angiogenic capability. This ageing-dependent impairment of endothelial functions is considered a key factor contributing to vascular dysfunctions, which is responsible of several age-related diseases of the vascular system and other organs. Several mechanisms have been described to control ageing-related endothelial cell senescence including microRNAs, mitochondrial dysfunction and micro environmental stressors, such as hyp…

0301 basic medicineSenescenceAgingEndotheliump73Biologymedicine.disease_cause03 medical and health sciencesEndotheliocyte; Endothelium; Hypoxia; MicroRNAs; Mitochondrial dysfunction; Oxidative stress; P53 family; P73; Transglutaminase 2; VEGF; Aging; Developmental BiologymicroRNAmedicineAnimalsHumansSettore MED/05 - Patologia ClinicaEndotheliocyte; Endothelium; Hypoxia; Mitochondrial dysfunction; Oxidative stress; Transglutaminase 2; VEGF; microRNAs; p53 family; p73Vascular DiseasesEndotheliumHypoxiaCellular SenescenceEndothelial CellsMicroRNASettore MED/23 - Chirurgia CardiacaBECN1Hypoxia (medical)VEGFMitochondriamicroRNAsEndothelial stem cellTransglutaminase 2030104 developmental biologymedicine.anatomical_structureOxidative stressAgeingImmunologyOxidative stremedicine.symptomMitochondrial dysfunctionp53 familyEndotheliocyteNeuroscienceOxidative stressDevelopmental BiologyMechanisms of Ageing and Development
researchProduct

MiR-24 induces chemotherapy resistance and hypoxic advantage in breast cancer

2017

// Giuseppina Roscigno 1, 2, * , Ilaria Puoti 1, 2, * , Immacolata Giordano 1 , Elvira Donnarumma 3 , Valentina Russo 1 , Alessandra Affinito 1 , Assunta Adamo 1 , Cristina Quintavalle 1, 2 , Matilde Todaro 4 , Maria dM Vivanco 5 , Gerolama Condorelli 1, 2 1 Department of Molecular Medicine and Medical Biotechnology, “Federico II” University of Naples, Naples, Italy 2 IEOS, CNR, Naples, Italy 3 IRCCS-SDN, Naples, Italy 4 Department of Pathobiology and Medical Biotechnology, University of Palermo, Palermo, Italy 5 CIC bioGUNE, Centre for Cooperative Research in Biosciences, Derio, Spain * These authors have contributed equally to the paper as first authors Correspondence to: Gerolama Condore…

0301 basic medicinecancer stem cellsApoptosisStem cell markermedicine.disease_causemicroRNAs Breast cancer Cancer stem cells BimL FIH1Mixed Function OxygenasesAntineoplastic Agent0302 clinical medicineCell MovementTumor Cells CulturedCell Self RenewalMixed Function OxygenaseBimLmicroRNACell HypoxiamicroRNAsGene Expression Regulation NeoplasticOncology030220 oncology & carcinogenesisNeoplastic Stem CellsFemaleBreast NeoplasmAdult stem cellHumanResearch PaperFIH1BimL; FIH1; breast cancer; cancer stem cells; microRNAsAntineoplastic AgentsBreast Neoplasms03 medical and health sciencesBreast cancerbreast cancerDownregulation and upregulationCancer stem cellmicroRNAmedicineBiomarkers TumorHumansCell Proliferationbusiness.industryCancer stem cellApoptosiRepressor Proteinmedicine.diseaseHypoxia-Inducible Factor 1 alpha SubunitMolecular medicineRepressor Proteins030104 developmental biologyDrug Resistance NeoplasmImmunologyCancer researchNeoplastic Stem CellCisplatinCarcinogenesisbusiness
researchProduct

Non-coding RNAs Functioning in Colorectal Cancer Stem Cells

2016

In recent years, the hypothesis of the presence of tumor-initiating cancer stem cells (CSCs) has received a considerable support. This model suggested the existence of CSCs which, thanks to their self-renewal properties, are able to drive the expansion and the maintenance of malignant cell populations with invasive and metastatic potential in cancer. Increasing evidence showed the ability of such cells to acquire self-renewal, multipotency, angiogenic potential, immune evasion, symmetrical and asymmetrical divisions which, along with the presence of several DNA repair mechanisms, further enhance their oncogenic potential making them highly resistant to common anticancer treatments. The main…

0301 basic medicinemedicine.disease_cause03 medical and health sciences0302 clinical medicineCancer stem cellEpithelialmesenchymal transitionmicroRNAmedicineEpithelial–mesenchymal transitionSonic hedgehogNon-coding RNACancer stem cells; Colorectal cancer; Differentiation; Epithelialmesenchymal transition; MicroRNAs; Non-coding RNAs; Self-renewal; Signaling pathways; Stemness; Tumorigenicity; Medicine (all); Biochemistry Genetics and Molecular Biology (all)TumorigenicityStemneBiochemistry Genetics and Molecular Biology (all)biologySignaling pathwayCancer stem cellMedicine (all)Wnt signaling pathwayCancerMicroRNAmedicine.diseaseColorectal cancerCell biology030104 developmental biologyDifferentiation030220 oncology & carcinogenesisbiology.proteinSelf-renewalStem cellCarcinogenesis
researchProduct

Liraglutide Increases Serum Levels of MicroRNA-27b, -130a and -210 in Patients with Type 2 Diabetes Mellitus: A Novel Epigenetic Effect

2020

Liraglutide has shown favourable effects on several cardiometabolic risk factors, beyond glucose control. MicroRNAs (miRNAs) regulate gene expression, resulting in post-transcriptional modifications of cell response and function. Specific miRNAs, including miRNA-27b, miRNA-130a, and miRNA-210, play a role in cardiometabolic disease. We aimed to determine the effect of liraglutide on the serum levels of miRNA-27b, miRNA-130a and miRNA-210. Twenty-five subjects with type-2 diabetes mellitus (T2DM), na&iuml

0301 basic medicinemedicine.medical_specialtyEndocrinology Diabetes and Metabolismlcsh:QR1-502IncretinType 2 diabetestype-2 diabetes030204 cardiovascular system & hematologyBiochemistryArticlelcsh:Microbiologyliraglutide; microRNAs; type-2 diabetes; cardiometabolic risk; epigenetic03 medical and health sciences0302 clinical medicineInterquartile rangeDiabetes mellitusInternal medicinecardiometabolic riskMedicineMolecular Biologyliraglutidebusiness.industryLiraglutideType 2 Diabetes MellitusMicroRNAmedicine.diseaseMetforminmicroRNAs030104 developmental biologyEndocrinologybusinessHomeostasisepigeneticmedicine.drugMetabolites
researchProduct

Medial tunica degeneration of the ascending aortic wall is associated with specific microRNA changes in bicuspid aortic valve disease

2021

Ascending aortic diameter is not an accurate parameter for surgical indication in patients with bicuspid aortic valve (BAV). Thus, the present study aimed to identify specific microRNAs (miRNAs/miRs) and their expression levels in aortic wall aneurysm associated with BAV according to severity of medial degeneration and to elucidate the association between the tissue expression levels of the miRNAs with their expression in plasma. Aortic wall and blood specimens were obtained from 38 patients: 12 controls and 26 patients with BAV with ascending aortic aneurysm. Of the patients with BAV, 19 had cusp fusions of right and left, 5 of right and non-coronary, and 2 of left and non-coronary. Two gr…

AdultMaleCancer ResearchPathologymedicine.medical_specialtyascending aortaGene ExpressionDissection (medical)BiochemistryAortic aneurysmBicuspid aortic valveAneurysmBicuspid Aortic Valve Diseasemedicine.arteryAscending aortaGeneticsHumansMedicineMolecular BiologyAortaAgedbicuspid aortic valve disease microRNAs ascending aorta biomarkersOncogeneSettore BIO/16 - Anatomia Umanabusiness.industrybiomarkersArticlesMiddle Agedmedicine.diseaseMolecular medicinemicroRNAsAortic AneurysmSettore MED/23ItalyOncologyAortic ValveMolecular MedicineBiomarker (medicine)FemaleTranscriptomebusinessMolecular Medicine Reports
researchProduct

Prognostic significance of miR-34a in Ewing sarcoma is associated with cyclin D1 and ki-67 expression.

2014

ABSTRACT Background At diagnosis, identification of reliable biological indicators of prognosis to allow stratification of patients according to different risks is an important but still unresolved aspect in the treatment of Ewing sarcoma (EWS) patients. This study aimed to explore the role of miR-34A expression on prognosis of EWS patients. Patients and methods Specimens from 109 patients with non-metastatic EWS treated at the Rizzoli Institute with neoadjuvant chemotherapy (protocols ISG/SSGIII, EW-1, EW-2, EW-REN2, EW-REN3, EW-PILOT) and 17 metastases were studied. Sixty-eight patients (62%) remained disease-free and 41 (38%) relapsed (median follow-up: 67 months, range 9–241 months). Ex…

AdultMalePrognosiHydro-Lyasemedicine.medical_treatmentSarcoma EwingDisease-Free SurvivalCyclin D1medicineHumansCyclin D1Neoplasm Metastasisprognostic biomarkerNeoadjuvant therapyHydro-LyasesAged 80 and overTissue microarraybiologybusiness.industryProportional hazards modelMedicine (all)Ewing's sarcomaMicroRNAHematologyMiddle Agedmedicine.diseasePrognosisNeoadjuvant TherapyNeoplasm MetastasiGene Expression Regulation NeoplasticMicroRNAsKi-67 AntigenTreatment OutcomeOncologyDrug Resistance NeoplasmKi-67biology.proteinCancer researchKi-67ImmunohistochemistryFemaleSarcomacyclin D1; Ewing sarcoma; Ki-67; miR-34a; prognostic biomarkers; Adult; Aged 80 and over; Cyclin D1; Disease-Free Survival; Drug Resistance Neoplasm; Female; Gene Expression Regulation Neoplastic; Humans; Hydro-Lyases; Ki-67 Antigen; Male; MicroRNAs; Middle Aged; Neoadjuvant Therapy; Neoplasm Metastasis; Prognosis; Sarcoma Ewing; Treatment Outcome; Medicine (all)businessEwing sarcomamiR-34aHumanAnnals of oncology : official journal of the European Society for Medical Oncology
researchProduct

Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells.

2010

International audience; Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural antioxidant with cardiovascular and cancer preventive properties that is currently at the stage of pre-clinical studies for human cancer prevention. Beside its known effects on protein coding genes, one possible mechanism for resveratrol protective activities is by modulating the levels of non-coding RNAs. Here, we analyzed the effects of resveratrol on microRNA populations in human SW480 colon cancer cells. We establish that resveratrol treatment decreases the levels of several oncogenic microRNAs targeting genes encoding Dicer1, a cytoplasmic RNase III producing mature microRNAs from their immediate precurs…

Antineoplastic AgentsSmad ProteinsResveratrolBiochemistryAntioxidantsArticleTransforming Growth Factor beta1chemistry.chemical_compoundTGFβTransforming Growth Factor betaCell Line TumormicroRNAStilbenesPTENHumansRibonuclease III[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyPharmacologyOncogene ProteinsbiologyEffectorTumor Suppressor ProteinsTransforming growth factor betaMolecular biologyColon cancer; microRNAs; miR-663; Resveratrol; SW480 cells; TGFβmiR-663Cell biologyColon cancerMicroRNAsSW480 cellschemistryResveratrolbiology.proteinSignal transductionTransforming growth factorSignal Transduction
researchProduct

Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants

2012

Plant artificial micro-RNAs (amiRs) have been engineered to target viral genomes and induce their degradation. However, the exceptional evolutionary plasticity of RNA viruses threatens the durability of the resistance conferred by these amiRs. It has recently been shown that viral populations not experiencing strong selective pressure from an antiviral amiR may already contain enough genetic variability in the target sequence to escape plant resistance in an almost deterministic manner. Furthermore, it has also been shown that viral populations exposed to subinhibitory concentrations of the antiviral amiR speed up this process. In this article, we have characterized the molecular evolutiona…

Artificial micro-RNAsPopulation genetics[SDV]Life Sciences [q-bio]Population DynamicsPotyvirusStatistics as TopicPopulationMutantArabidopsisReplicationMirnasBiologyType-1VirusEvolution Molecular03 medical and health sciencesRNA interferenceInterfering rnasGeneticsSirnaseducationMolecular BiologyPhylogenyResearch ArticlesEcology Evolution Behavior and SystematicsPlant Diseases030304 developmental biologyInfluenza-VirusInhibitionGenetics0303 health scienceseducation.field_of_studyArtificial micrornasResistant plantsNucleotides030302 biochemistry & molecular biologyGenetic VariationHigh-Throughput Nucleotide SequencingSequence Analysis DNAVirologyVirus evolution3. Good healthMicroRNAsExperimental evolutionMutationNext-generation sequencingRNA InterferenceTranscription
researchProduct

Inhibition of miR-21 restores RANKL/OPG ratio in multiple myeloma-derived bone marrow stromal cells and impairs the resorbing activity of mature oste…

2015

// Maria Rita Pitari 1 , Marco Rossi 1 , Nicola Amodio 1 , Cirino Botta 1 , Eugenio Morelli 1 , Cinzia Federico 1 , Annamaria Gulla 1 , Daniele Caracciolo 1 , Maria Teresa Di Martino 1 , Mariamena Arbitrio 2 , Antonio Giordano 3, 4 , Pierosandro Tagliaferri 1 , Pierfrancesco Tassone 1, 4 1 Department of Experimental and Clinical Medicine and T. Campanella Cancer Center, Magna Graecia University, S. Venuta University Campus, Catanzaro, Italy 2 ISN-CNR, Roccelletta di Borgia, Catanzaro, Italy 3 Department of Human Pathology and Oncology, University of Siena, Siena, Italy 4 Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology,…

Bone diseaseMessengerOsteoclastsTumor Microenvironment3' Untranslated RegionsMultiple myelomaTumorbiologyMesenchymal Stromal CellsRANKLProtein Inhibitors of Activated STATUp-Regulationmedicine.anatomical_structureOncologyRANKLmiRNAsmiR-21MiRNAMultiple MyelomaMiR-21; MiRNAs; Multiple myeloma bone disease; OPG; RANKL; 3' Untranslated Regions; Bone Marrow Cells; Bone Resorption; Cell Adhesion; Cell Line Tumor; Coculture Techniques; HEK293 Cells; Humans; Interleukin-6; Lentivirus; Mesenchymal Stromal Cells; MicroRNAs; Molecular Chaperones; Multiple Myeloma; Osteoclasts; Osteoprotegerin; Protein Inhibitors of Activated STAT; RANK Ligand; RNA Messenger; STAT3 Transcription Factor; Stromal Cells; Tumor Microenvironment; Up-Regulation; OncologyResearch Papermusculoskeletal diseasesSTAT3 Transcription FactorStromal cellBone Marrow CellsBone resorptionCell LineOsteoprotegerinCell Line TumormedicineCell AdhesionHumansRNA MessengerBone Resorptionbusiness.industryInterleukin-6LentivirusRANK LigandOsteoprotegerinMesenchymal Stem Cellsmedicine.diseaseMolecular medicineCoculture TechniquesMicroRNAsmultiple myeloma bone diseaseHEK293 CellsImmunologyCancer researchbiology.proteinRNAOPGBone marrowStromal CellsbusinessMolecular ChaperonesOncotarget
researchProduct

miR-29b negatively regulates human osteoclastic cell differentiation and function: Implications for the treatment of multiple myeloma-related bone di…

2013

Skeletal homeostasis relies upon a fine tuning of osteoclast (OCLs)-mediated bone resorption and osteoblast (OBLs)-dependent bone formation. This balance is unsettled by multiple myeloma (MM) cells, which impair OBL function and stimulate OCLs to generate lytic lesions. Emerging experimental evidence is disclosing a key regulatory role of microRNAs (miRNAs) in the regulation of bone homeostasis suggesting the miRNA network as potential novel target for the treatment of MM-related bone disease. Here, we report that miR-29b expression decreases progressively during human OCL differentiation in vitro. We found that lentiviral transduction of miR-29b into OCLs, even in the presence of MM cells,…

Bone diseasePhysiologyCellular differentiationCathepsin KClinical BiochemistryGene ExpressionOsteoclastsOsteolysisMMP9Cathepsin KCells CulturedTartrate-resistant acid phosphataseTumorCulturedReceptor Activator of Nuclear Factor-kappa BGenes fosCell DifferentiationOsteoblastCell biologyIsoenzymesmultiple myelomamedicine.anatomical_structureMatrix Metalloproteinase 9osteoclastMatrix Metalloproteinase 2medicine.medical_specialtyfosCellsAcid PhosphataseBiologyCollagen Type IBone resorptionCell LineOsteoclastCell Line TumorInternal medicinemedicineHumansBone ResorptionOsteoblastsmicroRNA.NFATC Transcription FactorsTartrate-Resistant Acid PhosphatasemiR-29bCell Biologymedicine.diseaseActinsMicroRNAsEndocrinologyGenesAcid Phosphatase; Actins; Bone Resorption; Cathepsin K; Cell Differentiation; Cell Line Tumor; Cells Cultured; Collagen Type I; Gene Expression; Genes fos; Humans; Isoenzymes; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; MicroRNAs; Multiple Myeloma; NFATC Transcription Factors; Osteoblasts; Osteoclasts; Osteolysis; Receptor Activator of Nuclear Factor-kappa BJournal of Cellular Physiology
researchProduct