Search results for " mining"
showing 10 items of 1548 documents
EFMviz
2020
Elementary Flux Modes (EFMs) are a tool for constraint-based modeling and metabolic network analysis. However, systematic and automated visualization of EFMs, capable of integrating various data types is still a challenge. In this study, we developed an extension for the widely adopted COBRA Toolbox, EFMviz, for analysis and graphical visualization of EFMs as networks of reactions, metabolites and genes. The analysis workflow offers a platform for EFM visualization to improve EFM interpretability by connecting COBRA toolbox with the network analysis and visualization software Cytoscape. The biological applicability of EFMviz is demonstrated in two use cases on medium (Escherichia coli, iAF1…
Data mining approaches to identify biomineralization related sequences.
2015
Proteomics is an efficient high throughput technique developed to identify proteins from a crude extract using sequence homology. Advances in Next Generation Sequencing (NGS) have led to increase knowledge of several non-model species. In the field of calcium carbonate biomineralization, the paucity of available sequences (such as the ones of mollusc shells) is still a bottleneck in most proteomic studies. Indeed, this technique needs proteins databases to find homology. The aim of this study was to perform different data mining approaches in order to identify novel shell proteins. To this end, we disposed of several publicly non-model molluscs databases. Previously identified molluscan she…
A new parallel pipeline for DNA methylation analysis of long reads datasets
2017
Background DNA methylation is an important mechanism of epigenetic regulation in development and disease. New generation sequencers allow genome-wide measurements of the methylation status by reading short stretches of the DNA sequence (Methyl-seq). Several software tools for methylation analysis have been proposed over recent years. However, the current trend is that the new sequencers and the ones expected for an upcoming future yield sequences of increasing length, making these software tools inefficient and obsolete. Results In this paper, we propose a new software based on a strategy for methylation analysis of Methyl-seq sequencing data that requires much shorter execution times while…
Rocker: Open source, easy-to-use tool for AUC and enrichment calculations and ROC visualization
2016
Receiver operating characteristics (ROC) curve with the calculation of area under curve (AUC) is a useful tool to evaluate the performance of biomedical and chemoinformatics data. For example, in virtual drug screening ROC curves are very often used to visualize the efficiency of the used application to separate active ligands from inactive molecules. Unfortunately, most of the available tools for ROC analysis are implemented into commercially available software packages, or are plugins in statistical software, which are not always the easiest to use. Here, we present Rocker, a simple ROC curve visualization tool that can be used for the generation of publication quality images. Rocker also…
DNA Injury and Repair Systems
2018
n/a
Reactome pathway analysis: a high-performance in-memory approach
2016
Reactome aims to provide bioinformatics tools for visualisation, interpretation and analysis of pathway knowledge to support basic research, genome analysis, modelling, systems biology and education. Pathway analysis methods have a broad range of applications in physiological and biomedical research; one of the main problems, from the analysis methods performance point of view, is the constantly increasing size of the data samples. Here, we present a new high-performance in-memory implementation of the well-established over-representation analysis method. To achieve the target, the over-representation analysis method is divided in four different steps and, for each of them, specific data st…
Applications of Chemoinformatics in Predictive Toxicology for Regulatory Purposes, Especially in the Context of the EU REACH Legislation
2018
Chemoinformatics methodologies such as QSAR/QSPR have been used for decades in drug discovery projects, especially for the finding of new compounds with therapeutic properties and the optimization of ADME properties on chemical series. The application of computational techniques in predictive toxicology is much more recent, and they are experiencing an increasingly interest because of the new legal requirements imposed by national and international regulations. In the pharmaceutical field, the US Food and Drug Administration (FDA) support the use of predictive models for regulatory decision-making when assessing the genotoxic and carcinogenic potential of drug impurities. In Europe, the REA…
Q-nexus: a comprehensive and efficient analysis pipeline designed for ChIP-nexus
2016
Background: ChIP-nexus, an extension of the ChIP-exo protocol, can be used to map the borders of protein-bound DNA sequences at nucleotide resolution, requires less input DNA and enables selective PCR duplicate removal using random barcodes. However, the use of random barcodes requires additional preprocessing of the mapping data, which complicates the computational analysis. To date, only a very limited number of software packages are available for the analysis of ChIP-exo data, which have not yet been systematically tested and compared on ChIP-nexus data. Results: Here, we present a comprehensive software package for ChIP-nexus data that exploits the random barcodes for selective removal …
Feasibility of sample size calculation for RNA-seq studies
2017
Sample size calculation is a crucial step in study design but is not yet fully established for RNA sequencing (RNA-seq) analyses. To evaluate feasibility and provide guidance, we evaluated RNA-seq sample size tools identified from a systematic search. The focus was on whether real pilot data would be needed for reliable results and on identifying tools that would perform well in scenarios with different levels of biological heterogeneity and fold changes (FCs) between conditions. We used simulations based on real data for tool evaluation. In all settings, the six evaluated tools provided widely different answers, which were strongly affected by FC. Although all tools failed for small FCs, s…
Common Hits Approach: Combining Pharmacophore Modeling and Molecular Dynamics Simulations.
2017
We present a new approach that incorporates flexibility based on extensive MD simulations of protein-ligand complexes into structure-based pharmacophore modeling and virtual screening. The approach uses the multiple coordinate sets saved during the MD simulations and generates for each frame a pharmacophore model. Pharmacophore models with the same pharmacophore features are pooled. In this way the high number of pharmacophore models that results from the MD simulation is reduced to only a few hundred representative pharmacophore models. Virtual screening runs are performed with every representative pharmacophore model; the screening results are combined and rescored to generate a single hi…