Search results for " mouse"
showing 10 items of 343 documents
Novel NG2-CreERT2 knock-in mice demonstrate heterogeneous differentiation potential of NG2 glia during development
2014
NG2 (nerve/glia antigen-2) is a type I transmembrane glycoprotein and also known as chondroitin sulfate proteoglycan 4. In the parenchyma of the central nervous system, NG2-expressing (NG2(+) ) cells have been identified as a novel type of glia with a strong potential to generate oligodendrocytes (OLs) in the developing white matter. However, the differentiation potential of NG2 glia remained controversial, largely attributable to shortcomings of transgenic mouse models used for fate mapping. To minimize these restrictions and to more faithfully mimic the endogenous NG2 expression in vivo, we generated a mouse line in which the open reading frame of the tamoxifen-inducible form of the Cre D…
Safe and Effective Adoptive T-Cell Receptor Transfer with a High Affinity Single Chain p53(264–272)-Specific TCR
2012
Abstract Abstract 4226 Several studies have demonstrated the clinical efficacy of adoptive T cell therapy for targeting cancer. Using HLA-A2.1 transgenic mice, we have demonstrated the feasibility of T-cell receptor (TCR) gene transfer into T cells to circumvent self-tolerance to the widely expressed human p53(264–272) tumor-associated antigen and developed approaches to generate high-affinity CD8-independent TCR. A safety concern of TCR gene transfer is the pairing of endogenous and introduced TCR chains resulting in the potential generation of self-reactive T cells (off-target autoimmunity). Several strategies to favor matched TCR chains pairing and thus enhancing TCR cell surface express…
Cutting Edge: TGF-β Signaling Is Required for the In Vivo Expansion and Immunosuppressive Capacity of Regulatory CD4+CD25+ T Cells
2004
Abstract Data regarding the role of TGF-β for the in vivo function of regulatory CD4+CD25+ T cells (Treg) are controversial. A transgenic mouse model with impaired TGF-β signaling specifically in T cells was used to assess the role of endogenous TGF-β for the in vivo function of CD4+CD25+ Treg in a murine model of colitis induced by dextran sulfate. Transfer of wild-type, but not transgenic CD4+CD25+ Treg was found to suppress colitis in wild-type mice. In addition, by transferring CFSE-labeled CD4+CD25+ Treg we could demonstrate that endogenous TGF-β promotes the expansion of CD4+CD25+ Treg in vivo. Transgenic mice themselves developed reduced numbers of peripheral CD4+CD25+ Treg and were …
A Potent Tumor-Reactive p53-Specific Single-Chain TCR without On- or Off-Target Autoimmunity In Vivo
2018
Genetic engineering of T cells with a T cell receptor (TCR) targeting tumor antigen is a promising strategy for cancer immunotherapy. Inefficient expression of the introduced TCR due to TCR mispairing may limit the efficacy and adversely affect the safety of TCR gene therapy. Here, we evaluated the safety and therapeutic efficiency of an optimized single-chain TCR (scTCR) specific for an HLA-A2.1-restricted (non-mutated) p53(264–272) peptide in adoptive T cell transfer (ACT) models using our unique transgenic mice expressing human p53 and HLA-A2.1 that closely mimic the human setting. Specifically, we showed that adoptive transfer of optimized scTCR-redirected T cells does not induce on-tar…
Plasma clearance of human low-density lipoprotein in human apolipoprotein B transgenic mice is related to particle diameter.
2004
To test for intrinsic differences in metabolic properties of low-density lipoprotein (LDL) as a function of particle size, we examined the kinetic behavior of 6 human LDL fractions ranging in size from 251 to 265 A injected intravenously into human apolipoprotein (apo) B transgenic mice. A multicompartmental model was formulated and fitted to the data by standard nonlinear regression using the Simulation, Analysis and Modeling (SAAM II) program. Smaller sized LDL particles (251 to 257 A) demonstrated a significantly slower fractional catabolic rate (FCR) (0.050 +/- 0.045 h(-1)) compared with particles of larger size (262 to 265 A) (0.134 +/- -0.015 h(-1), P.03), and there was a significant …
2004
With advancing age, thymic efficiency shows progressive decline due to thymic involution allowing impaired cell-mediated immunity and the appearance of age-related diseases. The intrinsic cause of thymic involution is still undefined. Chronic inflammation and high glucocorticoids (GCs) may be involved. However, transgenic mice, with increased GC sensitivity and over expression of GC receptors, display delayed age-associated thymic involution. This fact suggests that other substances may affect thymic involution. Among them, both isoforms of metallothioneins (MTs) I+II and III are the major candidates because their increments leads to organ atrophy in constant stress and are induced by IL-6,…
T Cell-Specific Overexpression of TGFß1 Fails to Influence Atherosclerosis in ApoE-Deficient Mice
2013
Clinical data have indicated a negative correlation between plasma TGFß1 concentrations and the extent of atherosclerosis and have thus led to the hypothesis that the pleiotropic cytokine may have anti-atherogenic properties. T-cells are currently discussed to significantly participate in atherogenesis, but the precise role of adaptive immunity in atherogenesis remains to be elucidated. TGFß1 is known to strongly modulate the function of T-cells, however, inhibition of TGFß1 signalling in T-cells of atherosclerosis-prone knock-out mice failed to unequivocally clarify the role of the cytokine for the development of atherosclerosis. In the present study, we thus tried to specify the role of T…
No effect of C-reactive protein on early atherosclerosis in LDLR-/- / human C-reactive protein transgenic mice
2008
summaryThe association between increased concentrations of C-reactive protein (CRP) and future cardiovascular events is well established. However, it is currently unclear whether this clinical observation represents an epiphenomenon or whether the pentraxin may actively promote the development of atherosclerosis. Experimental studies with knockout mice with a defect in apolipoprotein E (ApoE-/-) have been used to investigate the role of CRP in atherogenesis, but the results obtained have been contradictory so far. Since knockout mice with a defect in low density lipoprotein receptor (LDLR-/-) may represent a better model of atherogenesis compared to ApoE-/- animals, we undertook experiments…
Overexpression of TGF-ß1 in macrophages reduces and stabilizes atherosclerotic plaques in ApoE-deficient mice.
2011
Although macrophages represent the hallmark of both human and murine atherosclerotic lesions and have been shown to express TGF-ß1 (transforming growth factor β1) and its receptors, it has so far not been experimentally addressed whether the pleiotropic cytokine TGF-ß1 may influence atherogenesis by a macrophage specific mechanism. We developed transgenic mice with macrophage specific TGF-ß1 overexpression, crossed the transgenics to the atherosclerotic ApoE (apolipoprotein E) knock-out strain and quantitatively analyzed both atherosclerotic lesion development and composition of the resulting double mutants. Compared with control ApoE(-/-) mice, animals with macrophage specific TGF-ß1 overe…
Cholesterol and Amyloid-β: Evidence for a Cross-Talk between Astrocytes and Neuronal Cells.
2011
Accumulating data supports the concept that alterations of cholesterol metabolism might influence the development of Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive accumulation of amyloid-β (Aβ) peptides in the brain. Changes in the neuronal production of Aβ have been described as a function of cholesterol levels, thus suggesting a causal link between cholesterol homeostasis dysregulation and AD pathogenesis. Under physiological conditions, cholesterol uptake in the brain is efficiently prevented by the blood-brain barrier, and mature neurons are thought to rely on glial cells for their cholesterol supply. In the present study, we tested the hypothesis t…