Search results for " mutation"

showing 10 items of 1212 documents

Wee1 inhibition potentiates Wip1-dependent p53-negative tumor cell death during chemotherapy

2016

AbstractInactivation of p53 found in more than half of human cancers is often associated with increased tumor resistance to anti-cancer therapy. We have previously shown that overexpression of the phosphatase Wip1 in p53-negative tumors sensitizes them to chemotherapeutic agents, while protecting normal tissues from the side effects of anti-cancer treatment. In this study, we decided to search for kinases that prevent Wip1-mediated sensitization of cancer cells, thereby interfering with efficacy of genotoxic anti-cancer drugs. To this end, we performed a flow cytometry-based screening in order to identify kinases that regulated the levels of γH2AX, which were used as readout. Another criter…

Wip1ApoptosisCell Cycle ProteinsPharmacologyMESH: G2 Phase Cell Cycle CheckpointsHistonesMESH : PhosphorylationMiceMESH : Cell Cycle ProteinsMESH: AnimalsMESH: Tumor Suppressor Protein p53MESH: HistonesKinaseTp53 mutationsMESH : Mice Transgenic3. Good healthProtein Phosphatase 2CSurvival RateMESH : Antineoplastic AgentsH2ax phosphorylationP53 activationMESH: Protein Phosphatase 2CRNA InterferenceMESH : Colorectal NeoplasmsMESH : Carrier ProteinsHistone H2axMESH: MitochondriaImmunologyHuman fibroblastsMESH: Carrier ProteinsAntineoplastic AgentsMESH: Protein-Tyrosine KinasesMESH: Protein-Serine-Threonine KinasesMESH : Cisplatin03 medical and health sciencesMESH: Cell Cycle ProteinsGenotoxic stressMESH : Protein-Tyrosine KinasesHumansMESH : HistonesAnticancer TherapyMESH: DNA DamageCisplatinMESH: HumansMESH: Phosphorylation[ SDV.BC ] Life Sciences [q-bio]/Cellular BiologyMESH : HumansMESH : Nuclear Proteins030104 developmental biologyCancer cellMESH: Antineoplastic AgentsCisplatinCarrier ProteinsMESH: Nuclear ProteinsMESH : ApoptosisDna-damage response0301 basic medicineCancer ResearchMESH: Caspase 3MESH : Caspase 3PhosphorylationCytotoxicityMESH : DNA DamageSensitizationmedicine.diagnostic_testCaspase 3Nuclear ProteinsProtein-Tyrosine KinasesMESH : Survival RateMitochondriaG2 Phase Cell Cycle CheckpointsWee1medicine.anatomical_structureMESH : Protein Phosphatase 2COriginal ArticleMESH : MitochondriaColorectal Neoplasmsmedicine.drugMESH : Protein-Serine-Threonine KinasesMESH: Cell Line TumorMESH: Survival RateMESH: Mice TransgenicMESH: RNA InterferencePhosphataseMice Transgenic[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologyProtein Serine-Threonine KinasesFlow cytometryCellular and Molecular NeuroscienceCell Line TumorMESH : MicemedicineAnimalsMESH: MiceMESH : Cell Line TumorMESH: ApoptosisCell BiologyMESH : Tumor Suppressor Protein p53MESH: CisplatinCancer researchbiology.proteinMESH : AnimalsMESH : G2 Phase Cell Cycle CheckpointsMESH : RNA InterferenceTumor Suppressor Protein p53MESH: Colorectal NeoplasmsDNA DamageCell Death & Disease
researchProduct

X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

2017

International audience; By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2DNAAF4- HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are…

[SDV.GEN]Life Sciences [q-bio]/Geneticsvariantsoutermotilityinnerr2tp complexidentifies mutationsprotein[ SDV.GEN ] Life Sciences [q-bio]/Geneticsof-function mutationsdefectsarms
researchProduct

Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an "FCS score".

2018

Familial chylomicronaemia syndrome (FCS) is a rare, inherited disorder characterised by impaired clearance of triglyceride (TG)-rich lipoproteins from plasma, leading to severe hypertriglyceridaemia (HTG) and a markedly increased risk of acute pancreatitis. It is due to the lack of lipoprotein lipase (LPL) function, resulting from recessive loss of function mutations in the genes coding LPL or its modulators. A large overlap in the phenotype between FCS and multifactorial chylomicronaemia syndrome (MCS) contributes to the inconsistency in how patients are diagnosed and managed worldwide, whereas the incidence of acute hypertriglyceridaemic pancreatitis is more frequent in FCS. A panel of Eu…

[SDV]Life Sciences [q-bio]Diagnosis toolpopulation030204 cardiovascular system & hematologyburdenapoa50302 clinical medicineLoss of Function MutationRisk FactorsChylomicrons030212 general & internal medicineAge of OnsetHypolipidemic AgentsBIOMEDICINA I ZDRAVSTVO. Kliničke medicinske znanosti. Interna medicina.Lipoprotein lipaseplasma triglycerideshyperlipoproteinemiaPrognosis3. Good healthUp-RegulationPhenotypeAcute pancreatitislipids (amino acids peptides and proteins)Hyperlipoproteinemia Type IAcute pancreatitis ; Familial chylomicronaemia syndrome ; Major hypertriglyceridaemia ; Multifactorial chylomicronaemiaCardiology and Cardiovascular MedicineFamilial chylomicronaemia syndromeAlgorithmsacute-pancreatitismedicine.medical_specialtyConsensushypertriglyceridemiaetiologyAcute pancreatitis; Familial chylomicronaemia syndrome; Major hypertriglyceridaemia; Multifactorial chylomicronaemia/Decision Support TechniquesDiagnosis Differential03 medical and health sciencesAcute pancreatitis; Familial chylomicronaemia syndrome; Major hypertriglyceridaemia; Multifactorial chylomicronaemia; Cardiology and Cardiovascular MedicinePredictive Value of TestsInternal medicinemedicineHumansGenetic Predisposition to DiseaseAcute pancreatitiBIOMEDICINE AND HEALTHCARE. Clinical Medical Sciences. Internal Medicine.GenotypingTriglyceridesPregnancyReceiver operating characteristicbusiness.industrysevereMultifactorial chylomicronaemiaReproducibility of Resultsmutationslipoprotein-lipase genemedicine.diseaseConfidence intervalAcute pancreatitisLipoprotein LipasePancreatitisCardiovascular System & CardiologyPancreatitisMajor hypertriglyceridaemiabusinessBiomarkersAtherosclerosis
researchProduct

Rational backbone redesign of a fructosyl peptide oxidase to widen its active site access tunnel

2020

Fructosyl peptide oxidases (FPOXs) are enzymes currently used in enzymatic assays to measure the concentration of glycated hemoglobin and albumin in blood samples, which serve as biomarkers of diabetes. However, since FPOX are unable to work directly on glycated proteins, current enzymatic assays are based on a preliminary proteolytic digestion of the target proteins. Herein, to improve the speed and costs of the enzymatic assays for diabetes testing, we applied a rational design approach to engineer a novel enzyme with a wider access tunnel to the catalytic site, using a combination of Rosetta design and molecular dynamics simulations. Our final design, L3_35A, shows a significantly wider …

access tunnel biosensor diabetes fructosyl peptide oxidase rational enzyme designBioengineeringPeptidebiosensorApplied Microbiology and Biotechnologychemistry.chemical_compoundCatalytic DomainEnzyme Stabilityfructosyl peptide oxidasechemistry.chemical_classificationdiabetesbiologyPoint mutationRational designProteolytic enzymesAlbuminActive siteSettore CHIM/08 - Chimica FarmaceuticaEnzymeBiochemistrychemistryrational enzyme designbiology.proteinAmino Acid OxidoreductasesGlycated hemoglobinaccess tunnelBiotechnology
researchProduct

The Putative Metal Coordination Motif in the Endonuclease Domain of Human Parvovirus B19 NS1 Is Critical for NS1 Induced S Phase Arrest and DNA Damage

2011

The non-structural proteins (NS) of the parvovirus family are highly conserved multi-functional molecules that have been extensively characterized and shown to be integral to viral replication. Along with NTP-dependent helicase activity, these proteins carry within their sequences domains that allow them to bind DNA and act as nucleases in order to resolve the concatameric intermediates developed during viral replication. The parvovirus B19 NS1 protein contains sequence domains highly similar to those previously implicated in the above-described functions of NS proteins from adeno-associated virus (AAV), minute virus of mice (MVM) and other non-human parvoviruses. Previous studies have show…

apoptotic cell deathDNA repairDNA damagevirusesAmino Acid MotifsDNA Mutational AnalysisApoptosisSpodopteraViral Nonstructural ProteinsVirus ReplicationApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compound0302 clinical medicineControl of chromosome duplicationparvoviral infectionParvovirus B19 HumanAnimalsHumansMolecular BiologyEcology Evolution Behavior and SystematicsS phase030304 developmental biology0303 health sciencesbiologyParvovirushost cell DNA damagevirus diseasesHep G2 CellsCell BiologyEndonucleasesbiology.organism_classificationMolecular biology3. Good healthchemistryViral replicationS Phase Cell Cycle CheckpointsMutagenesis Site-Directed030211 gastroenterology & hepatologyDNAMinute virus of miceResearch PaperDNA DamageDevelopmental BiologyInternational Journal of Biological Sciences
researchProduct

The increase in maternal expression of axin1 and axin2 contribute to the zebrafish mutant ichabod ventralized phenotype.

2014

β-Catenin is a central effector of the Wnt pathway and one of the players in Ca(+)-dependent cell-cell adhesion. While many wnts are present and expressed in vertebrates, only one β-catenin exists in the majority of the organisms. One intriguing exception is zebrafish that carries two genes for β-catenin. The maternal recessive mutation ichabod presents very low levels of β-catenin2 that in turn affects dorsal axis formation, suggesting that β-catenin1 is incapable to compensate for β-catenin2 loss and raising the question of whether these two β-catenins may have differential roles during early axis specification. Here we identify a specific antibody that can discriminate selectively for β-…

axin1axin2zebrafish mutant ichabodMessengerEmbryonic DevelopmentBiochemistryBETA-CATENINAxin2-RGS DOMAINAxin ProteinAntibody SpecificitySettore BIO/10 - BiochimicaAnimalsAxin2-RGS DOMAIN; AXIS FORMATION; BETA-CATENIN; Wnt signaling; ZEBRAFISH; Animals; Antibody Specificity; Axin Protein; Blastula; Cell Nucleus; Embryonic Development; Female; Gene Expression Regulation Developmental; Genes Dominant; Immunohistochemistry; Lithium Chloride; Mutation; Phenotype; Protein Stability; Protein Transport; RNA Messenger; Signal Transduction; Up-Regulation; Zebrafish; Zebrafish Proteins; beta Catenin; Biochemistry; Cell Biology; Molecular BiologyDevelopmentalDominantRNA MessengerMolecular BiologyZebrafishbeta CateninGenes DominantAXIS FORMATIONCell NucleusProtein StabilityGene Expression Regulation DevelopmentalCell BiologyBlastulaZebrafish ProteinsWnt signalingImmunohistochemistryUp-RegulationProtein TransportPhenotypeGene Expression RegulationGenesMutationRNAFemaleLithium ChlorideSignal Transduction
researchProduct

Missense mutations of coagulation factor XII in hereditary angioedema with normal complement C1 inhibitor

2007

biologybusiness.industryImmunologyCoagulation Factor XIImedicine.diseaseComplement (complexity)C1-inhibitorHereditary angioedemaImmunologymedicinebiology.proteinMissense mutationbusinessMolecular BiologyMolecular Immunology
researchProduct

BRCA1 and BRCA2 germline mutations in sicilian breast and/or ovarian cancer families and their association with familial profiles

2009

breast cancerovarian cancergermline mutation
researchProduct

EPV139/#616 TP53 mutations differentially affect prognosis of endometrial cancer: an in-silico approach

2021

business.industryEndometrial cancerIn silicomedicineCancer researchTp53 mutationmedicine.diseaseAffect (psychology)businessE-Posters
researchProduct

BCL11A intellectual developmental disorder: defining the clinical spectrum and genotype-phenotype correlations

2021

AbstractPurposeHeterozygous variants in BCL11A underlie an intellectual developmental disorder with persistence of fetal hemoglobin (BCL11A-IDD, a.k.a. Dias-Logan syndrome). We sought to delineate the genotypic and phenotypic spectrum of BCL11A-IDD.MethodsWe performed an in-depth analysis of 42 patients with BCL11A-IDD ascertained through a collaborative network of clinical and research colleagues. We also reviewed 33 additional affected individuals previously reported in the literature or available through public repositories with clinical information.ResultsMolecular and clinical data analysis of 75 patients with BCL11A-IDD identified 60 unique variants (30 frameshift, 7 missense, 6 splic…

business.industryPostnatal microcephalyMicrodeletion syndromemedicine.diseaseBioinformaticsHypotoniaDevelopmental disorderAutism spectrum disorderIntellectual disabilityFetal hemoglobinmedicineMissense mutationmedicine.symptombusiness
researchProduct