Search results for " network"

showing 10 items of 6428 documents

Generalized Thru-Reflect-Line Calibration Technique for the Measurement of Multimodal Radiating Waveguides

2017

The objective of this letter is to extend the use of the generalized thru-reflect-line measurement technique to the case of a radiating multimodal rectangular waveguide aperture. Although this radiating aperture has been carefully studied from a theoretical point of view, the relevant experimental characterization has been limited to the case where the feeding waveguide is monomodal. In addition to theory, we also present experimental results that agree quite well with full-wave simulations, thereby fully validating the measurement technique.

0301 basic medicineEngineeringwaveguides open-endedbusiness.industryAperturePhysics::Optics020206 networking & telecommunications02 engineering and technologylaw.inventionGeneralized scattering matrix03 medical and health sciences030104 developmental biologyOpticslawLine (geometry)0202 electrical engineering electronic engineering information engineeringReflection (physics)CalibrationPoint (geometry)waveguide modesGeneralized scattering matrix; waveguide modes; waveguides open-ended; Electrical and Electronic EngineeringElectrical and Electronic EngineeringbusinessWaveguide
researchProduct

Recommendations for enterovirus diagnostics and characterisation within and beyond Europe

2018

Enteroviruses (EV) can cause severe neurological and respiratory infections, and occasionally lead to devastating outbreaks as previously demonstrated with EV-A71 and EV-D68 in Europe. However, these infections are still often underdiagnosed and EV typing data is not currently collected at European level. In order to improve EV diagnostics, collate data on severe EV infections and monitor the circulation of EV types, we have established European non-polio enterovirus network (ENPEN). First task of this cross-border network has been to ensure prompt and adequate diagnosis of these infections in Europe, and hence we present recommendations for non-polio EV detection and typing based on the co…

0301 basic medicineEuropean levelRECOMBINATIONNeurological infectionReviewMOUTH-DISEASEmedicine.disease_causeEMERGENCEFecesCentral Nervous System Infections[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesMedicineRespiratory Tract InfectionsCLINICAL SPECIMENSDiagnosticsDiagnostic Techniques and ProceduresComputingMilieux_MISCELLANEOUSEnterovirusEnterovirus D Human3. Good healthEuropeDetectionPCRInfectious DiseasesINFECTIONS[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseasesRNA ViralRNA INTERNAL CONTROLVp1 capsid proteinVirus isolation[SDV.MP.PRO] Life Sciences [q-bio]/Microbiology and Parasitology/Protistology[SDV.MP.PRO]Life Sciences [q-bio]/Microbiology and Parasitology/ProtistologyVirus03 medical and health sciencesVirologySURVEILLANCEEnterovirus InfectionsJournal ArticleRESPIRATORY VIRUSESddc:610TypingDisease burdenbusiness.industryOutbreakAMPLIFICATIONVirology[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyEnterovirus A Human030104 developmental biologyEnterovirusCapsid Proteins[SDV.MP.BAC] Life Sciences [q-bio]/Microbiology and Parasitology/Bacteriology610 Medizin und GesundheitEV typingbusinessEuropean non-polio enterovirus network (ENPEN)Journal of Clinical Virology
researchProduct

Virus-host interactome: Putting the accent on how it changes

2017

[EN] Viral infections are extremely complex processes that could only be well understood by precisely characterizing the interaction networks between the virus and the host components. In recent years, much effort has gone in this directionwith the aimof unveiling themolecular basis of viral pathology. These networks are mostly formed by viral and host proteins, and are expected to be dynamic bothwith time and space (i.e., with the progression of infection, as well as with the virus and host genotypes; what we call plastodynamic). This largely overlooked spatio-temporal evolution urgently calls for a change both in the conceptual paradigms and experimental techniques used so far to characte…

0301 basic medicineEvolutionSystems biologyBiophysicsComplex diseaseDiseaseComputational biologyBiologyBioinformaticsBiochemistryInteractomeVirusViral Proteins03 medical and health sciencesSpatio-Temporal AnalysisProtein networkVirologyStress (linguistics)AnimalsHumansProtein Interaction MapsVirus host030102 biochemistry & molecular biologyHost (biology)030104 developmental biologyVirus DiseasesHost-Pathogen InteractionsSystems biologyJournal of Proteomics
researchProduct

Diversification of spatiotemporal expression and copy number variation of the echinoid hbox12/pmar1/micro1 multigene family

2017

Changes occurring during evolution in the cis-regulatory landscapes of individual members of multigene families might impart diversification in their spatiotemporal expression and function. The archetypal member of the echinoid hbox12/pmar1/micro1 family is hbox12-a, a homeobox-containing gene expressed exclusively by dorsal blastomeres, where it governs the dorsal/ventral gene regulatory network during embryogenesis of the sea urchin Paracentrotus lividus. Here we describe the inventory of the hbox12/pmar1/micro1 genes in P. lividus, highlighting that gene copy number variation occurs across individual sea urchins of the same species. We show that the various hbox12/pmar1/micro1 genes grou…

0301 basic medicineEvolutionary GeneticsEmbryologyGene regulatory networklcsh:MedicineGene ExpressionMedicine (all); Biochemistry Genetics and Molecular Biology (all); Agricultural and Biological Sciences (all)Database and Informatics MethodsGene duplicationGene Regulatory NetworksCopy-number variationlcsh:ScienceSea urchinPhylogenyMultidisciplinarybiologyPhylogenetic treeMedicine (all)Genes HomeoboxGene Expression Regulation DevelopmentalAnimal ModelsGenomicsExperimental Organism SystemsMultigene FamilySequence AnalysisResearch ArticleEchinodermsDNA Copy Number VariationsBioinformaticsDNA transcriptionZoologySettore BIO/11 - Biologia MolecolareResearch and Analysis MethodsParacentrotus lividus03 medical and health sciencesSequence Motif Analysisbiology.animalGeneticsGene familyAnimalsGeneEvolutionary BiologyBiochemistry Genetics and Molecular Biology (all)lcsh:REmbryosOrganismsBiology and Life SciencesComputational Biologybiology.organism_classificationGenome AnalysisGenomic LibrariesInvertebrates030104 developmental biologyAgricultural and Biological Sciences (all)Evolutionary biologySea Urchinslcsh:QSequence AlignmentDevelopmental Biology
researchProduct

Metabolic and process engineering for biodesulfurization in Gram-negative bacteria

2017

32 p.-2 fig.-1 tab.

0301 basic medicineFossil FuelsGram-negative bacteriaScale-up030106 microbiologychemistry.chemical_elementBioengineeringThiophenesBiologyApplied Microbiology and BiotechnologyMetabolic engineering03 medical and health scienceschemistry.chemical_compoundPseudomonasOperonProcess engineering2. Zero hungerSulfur Compoundsbusiness.industryPseudomonasGeneral Medicinebiology.organism_classificationSulfurEnvironmentally friendly6. Clean waterKineticsBiodesulfurizationBiodegradation EnvironmentalchemistryDibenzothiopheneGram-negative bacteriaGenetic engineeringbusinessOrganosulfur compoundsMetabolic engineeringBacteriaMetabolic Networks and PathwaysDibenzothiopheneBiotechnology
researchProduct

Use of deep learning methods to translate drug-induced gene expression changes from rat to human primary hepatocytes

2020

In clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans. In this study, we evaluate the potential of deep learning techniques to translate the pattern of …

0301 basic medicineGene ExpressionGene Expression Regulation/drug effectsPathology and Laboratory MedicineConvolutional neural networkTOXICITYMachine LearningVoeding Metabolisme en GenomicaTime Measurement0302 clinical medicineGene expressionMedicine and Health SciencesMeasurementClinical Trials as TopicMultidisciplinaryArtificial neural networkPharmaceuticsQRMetabolism and GenomicsTOXICOGENOMICS030220 oncology & carcinogenesisMetabolisme en GenomicaMedicineEngineering and TechnologyNutrition Metabolism and GenomicsHepatocytes/drug effectsAlgorithmsResearch ArticleComputer and Information SciencesClinical Trials as Topic/statistics & numerical dataNeural NetworksGenetic ToxicologyTOXICOLOGYSciencePredictive ToxicologyComputational biologyBiologyComputer03 medical and health sciencesDose Prediction MethodsDeep LearningVoedingArtificial IntelligenceIn vivoGeneticsLife ScienceAnimalsHumansGeneNutritionbusiness.industryDeep learningBiology and Life SciencesGold standard (test)REPRESENTATIONSRats030104 developmental biologyGene Expression RegulationHepatocytesArtificial intelligenceNeural Networks ComputerToxicogenomicsbusinessNeuroscience
researchProduct

MiasDB: A Database of Molecular Interactions Associated with Alternative Splicing of Human Pre-mRNAs.

2016

Alternative splicing (AS) is pervasive in human multi-exon genes and is a major contributor to expansion of the transcriptome and proteome diversity. The accurate recognition of alternative splice sites is regulated by information contained in networks of protein-protein and protein-RNA interactions. However, the mechanisms leading to splice site selection are not fully understood. Although numerous databases have been built to describe AS, molecular interaction databases associated with AS have only recently emerged. In this study, we present a new database, MiasDB, that provides a description of molecular interactions associated with human AS events. This database covers 938 interactions …

0301 basic medicineGene regulatory networklcsh:MedicineRNA-binding proteinRNA-binding proteinscomputer.software_genreBiochemistryHistonesExonDatabase and Informatics MethodsDatabases GeneticProtein Interaction MappingRNA PrecursorsGene Regulatory NetworksDatabase Searchinglcsh:ScienceMultidisciplinaryDatabaseExonsGenomicsGenomic DatabasesNucleic acidsRNA splicingProteomeSequence AnalysisResearch ArticleSequence DatabasesBiologyResponse ElementsResearch and Analysis MethodsGenome Complexity03 medical and health sciencesGeneticsHumansMolecular Biology TechniquesSequencing TechniquesProtein InteractionsGeneMolecular BiologyInternetlcsh:RAlternative splicingIntronBiology and Life SciencesComputational BiologyProteinsGenome AnalysisIntronsAlternative Splicing030104 developmental biologyBiological DatabasesRNA processingRNAlcsh:QRNA Splice SitesGene expressioncomputerProtein KinasesTranscription FactorsPloS one
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

2017

AbstractWe asked if essentiality for either fertility or viability differentially affects sequence evolution of human testis proteins. Based on murine knockout data, we classified a set of 965 proteins expressed in human seminiferous tubules into three categories: proteins essential for prepubertal survival (“lethality proteins”), associated with male sub- or infertility (“male sub-/infertility proteins”), and nonessential proteins. In our testis protein dataset, lethality genes evolved significantly slower than nonessential and male sub-/infertility genes, which is in line with other authors’ findings. Using tissue specificity, connectivity in the protein-protein interaction (PPI) network,…

0301 basic medicineGeneticsInfertilityMultidisciplinaryIn silicomedia_common.quotation_subjectGene regulatory networkFertilityBiologymedicine.diseaseGene expression profilingTranscriptome03 medical and health sciences030104 developmental biology0302 clinical medicineSexual selectionmedicineGene030217 neurology & neurosurgerymedia_commonScientific Reports
researchProduct

Model-based design of RNA hybridization networks implemented in living cells

2017

[EN] Synthetic gene circuits allow the behavior of living cells to be reprogrammed, and non-coding small RNAs (sRNAs) are increasingly being used as programmable regulators of gene expression. However, sRNAs (natural or synthetic) are generally used to regulate single target genes, while complex dynamic behaviors would require networks of sRNAs regulating each other. Here, we report a strategy for implementing such networks that exploits hybridization reactions carried out exclusively by multifaceted sRNAs that are both targets of and triggers for other sRNAs. These networks are ultimately coupled to the control of gene expression. We relied on a thermo-dynamic model of the different stable…

0301 basic medicineGeneticsNetwork architectureModels GeneticQHGene regulatory networkRNAGene ExpressionNucleic Acid HybridizationBiology03 medical and health sciencesNucleic acid thermodynamics030104 developmental biologyGene expressionModel-based designGeneticsEscherichia coliRNAThermodynamicsGene Regulatory NetworksSingle-Cell AnalysisSynthetic Biology and BioengineeringGeneQH426Function (biology)
researchProduct