Search results for " numerical analysis."

showing 10 items of 103 documents

Optimal recovery of a radiating source with multiple frequencies along one line

2020

We study an inverse problem where an unknown radiating source is observed with collimated detectors along a single line and the medium has a known attenuation. The research is motivated by applications in SPECT and beam hardening. If measurements are carried out with frequencies ranging in an open set, we show that the source density is uniquely determined by these measurements up to averaging over levelsets of the integrated attenuation. This leads to a generalized Laplace transform. We also discuss some numerical approaches and demonstrate the results with several examples.

attenuated Radon transformMultispectralRAYUniqueness theorem01 natural sciencesinversio-ongelmat44A10 (Primary) 65R32 44A60 46N40 65Z05 (Secondary)030218 nuclear medicine & medical imaging0302 clinical medicine111 MathematicsDiscrete Mathematics and CombinatoricstietokonetomografiaPharmacology (medical)INVERSIONnuclear medicineBeam hardeningPhysicsLaplace transformDetectorNumerical Analysis (math.NA)Inverse problemuniqueness theoremFunctional Analysis (math.FA)Mathematics - Functional AnalysisMultiplicative system theoremkuvantaminensovellettu matematiikkaModeling and SimulationSPECTLine (geometry)numeerinen analyysipositroniemissiotomografiaemission computed tomographyAttenuated Radon transformEmission computed tomographyControl and OptimizationLaplace transformmultispectralOpen setCollimated light03 medical and health sciencesnuclear medicine.multiplicative system theoremFOS: Mathematicsinverse source problemMathematics - Numerical Analysis0101 mathematicsAttenuation010102 general mathematicsInverse source problemRangingComputational physicsTENSOR TOMOGRAPHYPETbeam hardeningNuclear MedicineAnalysis
researchProduct

Experimental analysis of "bovedas tabicadas"

2012

A particular type of vaulted structures, known as bóvedas tabicadas (Catalan vaults), made with alternate layers of bricks and mortar and characterized by a very low thickness in comparison to the other two dimensions, are studied. The research has been faced under the historical aspect as well as under the mechanical one, developing experimental and numerical analysis regarding real existing structures. In particular, the experimental analysis, performed by effecting compression and bending tests on samples taken from a real structure, has been devoted to the constitutive material identification and the characterization is made by considering the material as an ideal homogeneous; further e…

bóvedas tabicadas identification experimental and numerical analysis.Settore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Energy-stable linear schemes for polymer-solvent phase field models

2017

We present new linear energy-stable numerical schemes for numerical simulation of complex polymer-solvent mixtures. The mathematical model proposed by Zhou, Zhang and E (Physical Review E 73, 2006) consists of the Cahn-Hilliard equation which describes dynamics of the interface that separates polymer and solvent and the Oldroyd-B equations for the hydrodynamics of polymeric mixtures. The model is thermodynamically consistent and dissipates free energy. Our main goal in this paper is to derive numerical schemes for the polymer-solvent mixture model that are energy dissipative and efficient in time. To this end we will propose several problem-suited time discretizations yielding linear scheme…

chemistry.chemical_classificationQuantitative Biology::BiomoleculesComputer simulationPhase field modelsNumerical Analysis (math.NA)010103 numerical & computational mathematicsPolymerMixture model01 natural sciences010101 applied mathematicsSolventCondensed Matter::Soft Condensed MatterComputational MathematicsComputational Theory and MathematicschemistryModeling and SimulationFOS: MathematicsDissipative systemStatistical physicsMathematics - Numerical Analysis0101 mathematicsEnergy (signal processing)Mathematics
researchProduct

New degrees of freedom for differential forms on cubical meshes

2022

We consider new degrees of freedom for higher order differential forms on cubical meshes. The approach is inspired by the idea of Rapetti and Bossavit to define higher order Whitney forms and their degrees of freedom using small simplices. We show that higher order differential forms on cubical meshes can be defined analogously using small cubes and prove that these small cubes yield unisolvent degrees of freedom. Significantly, this approach is compatible with discrete exterior calculus and expands the framework to cover higher order methods on cubical meshes, complementing the earlier strategy based on simplices.

degrees of freedomFOS: Mathematicscochainsdifferential formsMathematics - Numerical AnalysisNumerical Analysis (math.NA)differentiaalilaskentacubical meshdiscrete exterior calculus
researchProduct

Convergence of dynamic programming principles for the $p$-Laplacian

2018

We provide a unified strategy to show that solutions of dynamic programming principles associated to the $p$-Laplacian converge to the solution of the corresponding Dirichlet problem. Our approach includes all previously known cases for continuous and discrete dynamic programming principles, provides new results, and gives a convergence proof free of probability arguments.

equivalent notions of solutions01 natural sciencesMathematics - Analysis of PDEsnumerical methodsConvergence (routing)FOS: MathematicsApplied mathematicsgeneralized viscosity solutiondiscrete approximationsMathematics - Numerical Analysis0101 mathematicsGeometry and topologyDirichlet problemMathematicsviscosity solutionosittaisdifferentiaaliyhtälötDirichlet problemasymptotic mean value propertiesconvergencenumeeriset menetelmätApplied Mathematics010102 general mathematicsNumerical Analysis (math.NA)dynamic programming principle010101 applied mathematicsDynamic programmingp-Laplacianmonotone approximationsapproksimointiAnalysisAnalysis of PDEs (math.AP)
researchProduct

Inverse problems and invisibility cloaking for FEM models and resistor networks

2013

In this paper we consider inverse problems for resistor networks and for models obtained via the finite element method (FEM) for the conductivity equation. These correspond to discrete versions of the inverse conductivity problem of Calderón. We characterize FEM models corresponding to a given triangulation of the domain that are equivalent to certain resistor networks, and apply the results to study nonuniqueness of the discrete inverse problem. It turns out that the degree of nonuniqueness for the discrete problem is larger than the one for the partial differential equation. We also study invisibility cloaking for FEM models, and show how an arbitrary body can be surrounded with a layer …

finite element methodBoundary (topology)CloakingInverse35R30 65N30 05C5001 natural sciencesDomain (mathematical analysis)inversio-ongelmatMathematics - Analysis of PDEsFOS: MathematicsMathematics - Numerical Analysis0101 mathematicsMathematicsPartial differential equationinverse problemsApplied Mathematicsta111010102 general mathematicsMathematical analysisTriangulation (social science)Numerical Analysis (math.NA)Inverse problem16. Peace & justiceFinite element methodComputer Science::Other010101 applied mathematicselementtimenetelmäModeling and Simulationresistor networksAnalysis of PDEs (math.AP)
researchProduct

A fast Fourier transform based direct solver for the Helmholtz problem

2018

This article is devoted to the efficient numerical solution of the Helmholtz equation in a two‐ or three‐dimensional (2D or 3D) rectangular domain with an absorbing boundary condition (ABC). The Helmholtz problem is discretized by standard bilinear and trilinear finite elements on an orthogonal mesh yielding a separable system of linear equations. The main key to high performance is to employ the fast Fourier transform (FFT) within a fast direct solver to solve the large separable systems. The computational complexity of the proposed FFT‐based direct solver is O(N log N) operations. Numerical results for both 2D and 3D problems are presented confirming the efficiency of the method discussed…

finite‐element discretizationHelmholtz equationDiscretizationFast Fourier transform010103 numerical & computational mathematicsSystem of linear equationsabsorbing boundary conditions01 natural sciencessymbols.namesake35J05 42A38 65F05 65N22FOS: MathematicsFourier'n sarjatApplied mathematicsBoundary value problemMathematics - Numerical AnalysisHelmholtz equation0101 mathematicsMathematicsosittaisdifferentiaaliyhtälötAlgebra and Number Theorynumeeriset menetelmätApplied MathematicsNumerical Analysis (math.NA)SolverFinite element method010101 applied mathematicsFourier transformsymbolsFourier transformnumeerinen analyysifast direct solver
researchProduct

A coupled discontinuous Galerkin-Finite Volume framework for solving gas dynamics over embedded geometries

2021

Author(s): Gulizzi, Vincenzo; Almgren, Ann S; Bell, John B | Abstract: We present a computational framework for solving the equations of inviscid gas dynamics using structured grids with embedded geometries. The novelty of the proposed approach is the use of high-order discontinuous Galerkin (dG) schemes and a shock-capturing Finite Volume (FV) scheme coupled via an $hp$ adaptive mesh refinement ($hp$-AMR) strategy that offers high-order accurate resolution of the embedded geometries. The $hp$-AMR strategy is based on a multi-level block-structured domain partition in which each level is represented by block-structured Cartesian grids and the embedded geometry is represented implicitly by a…

math.NAPhysics and Astronomy (miscellaneous)Computer scienceEmbedded boundariesDiscontinuous Galerkin methodsBasis functionClassification of discontinuitiesShock-capturing schemeslaw.inventionDiscontinuous Galerkin methodInviscid flowlawFOS: MathematicsApplied mathematicsCartesian coordinate systemMathematics - Numerical Analysiscs.NANumerical AnalysisFinite volume methodAdaptive mesh refinementhp-AMRApplied MathematicsNumerical Analysis (math.NA)Finite Volume methodsIdeal gasComputer Science ApplicationsComputational MathematicsModeling and SimulationSettore ING-IND/06 - Fluidodinamica
researchProduct

On a nonlinear Schrödinger equation for nucleons in one space dimension

2021

We study a 1D nonlinear Schrödinger equation appearing in the description of a particle inside an atomic nucleus. For various nonlinearities, the ground states are discussed and given in explicit form. Their stability is studied numerically via the time evolution of perturbed ground states. In the time evolution of general localized initial data, they are shown to appear in the long time behaviour of certain cases.

numerical studySpace dimensionNonlinear Schrö010103 numerical & computational mathematicsNonlinear Schrödinger equations01 natural sciencesStability (probability)symbols.namesakeMathematics - Analysis of PDEs[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]Mathematics - Numerical Analysis0101 mathematics[MATH]Mathematics [math]dinger equationsNonlinear Schrödinger equationMathematicsMSC 35Q55 35C08 65M70Numerical AnalysisApplied Mathematics010102 general mathematicsTime evolutionground statesComputational MathematicsClassical mechanicsModeling and SimulationAtomic nucleussymbolsParticleNucleonAnalysis[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
researchProduct

Functional a posteriori error estimates for boundary element methods

2019

Functional error estimates are well-established tools for a posteriori error estimation and related adaptive mesh-refinement for the finite element method (FEM). The present work proposes a first functional error estimate for the boundary element method (BEM). One key feature is that the derived error estimates are independent of the BEM discretization and provide guaranteed lower and upper bounds for the unknown error. In particular, our analysis covers Galerkin BEM and the collocation method, what makes the approach of particular interest for scientific computations and engineering applications. Numerical experiments for the Laplace problem confirm the theoretical results.

osittaisdifferentiaaliyhtälötDiscretizationApplied MathematicsComputationNumerical analysisNumerical Analysis (math.NA)adaptive mesh-refinementFinite element methodMathematics::Numerical Analysisboundary element methodComputational MathematicsComputer Science::Computational Engineering Finance and ScienceCollocation methodMathematikFOS: MathematicsApplied mathematicsA priori and a posterioriMathematics - Numerical Analysisnumeerinen analyysivirheanalyysiGalerkin methodBoundary element methodfunctional a posteriori error estimate65N38 65N15 65N50MathematicsNumerische Mathematik
researchProduct