Search results for " optimization."
showing 10 items of 2333 documents
Cryptanalysis of Knapsack Cipher Using Ant Colony Optimization
2018
Ant Colony Optimization is a search metaheuristic inspired by the behavior of real ant colonies and shown their effectiveness, robustness to solve a wide variety of complex problems. In this paper, we present a novel Ant Colony Optimization (ACO) based attack for cryptanalysis of knapsack cipher algorithm. A Cipher-text only attack is used to discover the plaintext from the cipher-text. Moreover, our approach allows us to break knapsack cryptosystem in a minimum search space when compared with other techniques. Experimental results prove that ACO can be used as an effective tool to attack knapsack cipher.
An abstract inf-sup problem inspired by limit analysis in perfect plasticity and related applications
2021
This paper is concerned with an abstract inf-sup problem generated by a bilinear Lagrangian and convex constraints. We study the conditions that guarantee no gap between the inf-sup and related sup-inf problems. The key assumption introduced in the paper generalizes the well-known Babuška–Brezzi condition. It is based on an inf-sup condition defined for convex cones in function spaces. We also apply a regularization method convenient for solving the inf-sup problem and derive a computable majorant of the critical (inf-sup) value, which can be used in a posteriori error analysis of numerical results. Results obtained for the abstract problem are applied to continuum mechanics. In particular…
Efficient linear fusion of partial estimators
2018
Abstract Many signal processing applications require performing statistical inference on large datasets, where computational and/or memory restrictions become an issue. In this big data setting, computing an exact global centralized estimator is often either unfeasible or impractical. Hence, several authors have considered distributed inference approaches, where the data are divided among multiple workers (cores, machines or a combination of both). The computations are then performed in parallel and the resulting partial estimators are finally combined to approximate the intractable global estimator. In this paper, we focus on the scenario where no communication exists among the workers, de…
A New Technique for Education Process Optimization via the Dual Control Approach
2018
Energy Efficient Consensus Over Directed Graphs
2018
Consensus algorithms are iterative methods that represent a basic building block to achieve superior functionalities in increasingly complex sensor networks by facilitating the implementation of many signal-processing tasks in a distributed manner. Due to the heterogeneity of the devices, which may present very different capabilities (e.g. energy supply, transmission range), the energy often becomes a scarce resource and the communications turn into directed. To maximize the network lifetime, a magnitude that in this work measures the number of consensus processes that can be executed before the first node in the network runs out of battery, we propose a topology optimization methodology fo…
Register data in sample allocations for small-area estimation
2018
The inadequate control of sample sizes in surveys using stratified sampling and area estimation may occur when the overall sample size is small or auxiliary information is insufficiently used. Very small sample sizes are possible for some areas. The proposed allocation based on multi-objective optimization uses a small-area model and estimation method and semi-collected empirical data annually collected empirical data. The assessment of its performance at the area and at the population levels is based on design-based sample simulations. Five previously developed allocations serve as references. The model-based estimator is more accurate than the design-based Horvitz–Thompson estimator and t…
Decentralized Subspace Projection for Asymmetric Sensor Networks
2020
A large number of applications in Wireless Sensor Networks include projecting a vector of noisy observations onto a subspace dictated by prior information about the field being monitored. In general, accomplishing such a task in a centralized fashion, entails a large power consumption, congestion at certain nodes and suffers from robustness issues against possible node failures. Computing such projections in a decentralized fashion is an alternative solution that solves these issues. Recent works have shown that this task can be done via the so-called graph filters where only local inter-node communication is performed in a distributed manner using a graph shift operator. Most of the existi…
Multi-level optimization of a fiber transmission system via nonlinearity management
2006
Nonlinearity management is explored as a complete tool to obtain maximum transmission reach in a WDM fiber transmission system, making it possible to optimize multiple system parameters, including optimal dispersion pre-compensation, with fast simulations based on the continuous-wave approximation. © 2006 Optical Society of America.
Energy-Efficient Context-Aware Resource Allocation for Edge-Computing-Empowered Industrial IoT
2020
Edge computing provides a promising paradigm to support the implementation of industrial Internet of Things (IIoT) by offloading computational-intensive tasks from resource-limited machine-type devices (MTDs) to powerful edge servers. However, the performance gain of edge computing may be severely compromised due to limited spectrum resources, capacity-constrained batteries, and context unawareness. In this chapter, we consider the optimization of channel selection which is critical for efficient and reliable task delivery. We aim at maximizing the long-term throughput subject to long-term constraints of energy budget and service reliability. We propose a learning-based channel selection fr…
Feature selection with Ant Colony Optimization and its applications for pattern recognition in space imagery
2016
This paper presents a feature selection (FS) algorithm using Ant Colony Optimization (ACO). It is inspired by the particular behavior of real ants, namely by the fact that they are capable of finding the shortest path between a food source and the nest. There are considered two ACO-FS model applications for pattern recognition in remote sensing imagery: ACO Band Selection (ACO-BS) and ACO Training Label Purification (ACO-TLP). The ACO-BS reduces dimensionality of an input multispectral image data by selecting the “best” subset of bands to accomplish the classification task. The ACO-TLP selects the most informative training samples from a given set of labeled vectors in order to optimize the…