Search results for " optimization"
showing 10 items of 2367 documents
Simultaneous optimization of harvest schedule and measurement strategy
2013
In many recent studies, the value of forest inventory information in the harvest scheduling has been examined. Usually only the profitability of measuring simultaneously all the stands in the area is examined. Yet, it may be more profitable to concentrate the measurement efforts to some subset of them. In this paper, the authors demonstrate that stochastic optimization can be used for defining the optimal measurement strategy simultaneously with the harvest decisions. The results show that without end-inventory constraints, it was most profitable to measure the stands that were just below the medium age. Measuring the oldest stands was not profitable at all. It turned out to be profitable t…
Exact extension of the DIRECT algorithm to multiple objectives
2019
The direct algorithm has been recognized as an efficient global optimization method which has few requirements of regularity and has proven to be globally convergent in general cases. direct has been an inspiration or has been used as a component for many multiobjective optimization algorithms. We propose an exact and as genuine as possible extension of the direct method for multiple objectives, providing a proof of global convergence (i.e., a guarantee that in an infinite time the algorithm becomes everywhere dense). We test the efficiency of the algorithm on a nonlinear and nonconvex vector function. peerReviewed
Wastewater treatment: New insight provided by interactive multiobjective optimization
2011
In this paper, we describe a new interactive tool developed for wastewater treatment plant design. The tool is aimed at supporting the designer in designing new wastewater treatment plants as well as optimizing the performance of already available plants. The idea is to utilize interactive multiobjective optimization which enables the designer to consider the design with respect to several conflicting evaluation criteria simultaneously. This is more important than ever because the requirements for wastewater treatment plants are getting tighter and tighter from both environmental and economical reasons. By combining a process simulator to simulate wastewater treatment and an interactive mul…
E-NAUTILUS: A decision support system for complex multiobjective optimization problems based on the NAUTILUS method
2015
Interactive multiobjective optimization methods cannot necessarily be easily used when (industrial) multiobjective optimization problems are involved. There are at least two important factors to be considered with any interactive method: computationally expensive functions and aspects of human behavior. In this paper, we propose a method based on the existing NAUTILUS method and call it the Enhanced NAUTILUS (E-NAUTILUS) method. This method borrows the motivation of NAUTILUS along with the human aspects related to avoiding trading-off and anchoring bias and extends its applicability for computationally expensive multiobjective optimization problems. In the E-NAUTILUS method, a set of Pareto…
On shape differentiation of discretized electric field integral equation
2013
Abstract This work presents shape derivatives of the system matrix representing electric field integral equation discretized with Raviart–Thomas basis functions. The arising integrals are easy to compute with similar methods as the entries of the original system matrix. The results are compared to derivatives computed with automatic differentiation technique and finite differences, and are found to be in an excellent agreement. Furthermore, the derived formulas are employed to analyze shape sensitivity of the input impedance of a planar inverted F-antenna, and the results are compared to those obtained using a finite difference approximation.
Linear fusion of interrupted reports in cooperative spectrum sensing for cognitive radio networks
2015
Interrupted reporting has recently been introduced as an effective method to increase the energy efficiency of cooperative spectrum sensing schemes in cognitive radio networks. In this paper, joint optimization of the reporting and fusion phases in a cooperative sensing with interrupted reporting is considered. This optimization aims at finding the best weights used at the fusion center to construct a linear fusion of the received interrupted reports, jointly with Bernoulli distributions governing the statistical behavior of the interruptions. The problem is formulated by using the deflection criterion and as a nonconvex quadratic program which is then solved for a suboptimal solution, in a…
Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models
2017
Abstract European options can be priced by solving parabolic partial(-integro) differential equations under stochastic volatility and jump-diffusion models like the Heston, Merton, and Bates models. American option prices can be obtained by solving linear complementary problems (LCPs) with the same operators. A finite difference discretization leads to a so-called full order model (FOM). Reduced order models (ROMs) are derived employing proper orthogonal decomposition (POD). The early exercise constraint of American options is enforced by a penalty on subset of grid points. The presented numerical experiments demonstrate that pricing with ROMs can be orders of magnitude faster within a give…
Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy
2012
Abstract We present an approach to interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy. The approach relies on formulae for lower and upper bounds on coordinates of the outcome of an arbitrary efficient variant corresponding to preference information expressed by the Decision Maker. In contrast to earlier works on that subject, here lower and upper bounds can be calculated and their accuracy controlled entirely within evolutionary computation framework. This is made possible by exploration of not only the region of feasible variants – a standard within evolutionary optimization, but also the region of i…
Genetic programming through bi-objective genetic algorithms with a study of a simulated moving bed process involving multiple objectives
2013
A new bi-objective genetic programming (BioGP) technique has been developed for meta-modeling and applied in a chromatographic separation process using a simulated moving bed (SMB) process. The BioGP technique initially minimizes training error through a single objective optimization procedure and then a trade-off between complexity and accuracy is worked out through a genetic algorithm based bi-objective optimization strategy. A benefit of the BioGP approach is that an expert user or a decision maker (DM) can flexibly select the mathematical operations involved to construct a meta-model of desired complexity or accuracy. It is also designed to combat bloat - a perennial problem in genetic …
Ensemble strategies in Compact Differential Evolution
2011
Differential Evolution is a population based stochastic algorithm with less number of parameters to tune. However, the performance of DE is sensitive to the mutation and crossover strategies and their associated parameters. To obtain optimal performance, DE requires time consuming trial and error parameter tuning. To overcome the computationally expensive parameter tuning different adaptive/self-adaptive techniques have been proposed. Recently the idea of ensemble strategies in DE has been proposed and favorably compared with some of the state-of-the-art self-adaptive techniques. Compact Differential Evolution (cDE) is modified version of DE algorithm which can be effectively used to solve …