Search results for " p-Laplacian."
showing 10 items of 22 documents
Large solutions for nonlinear parabolic equations without absorption terms
2012
In this paper we give a suitable notion of entropy solution of parabolic $p-$laplacian type equations with $1\leq p<2$ which blows up at the boundary of the domain. We prove existence and uniqueness of this type of solutions when the initial data is locally integrable (for $1<p<2$) or integrable (for $p=1$; i.e the Total Variation Flow case).
Two Nontrivial Solutions for Robin Problems Driven by a p–Laplacian Operator
2020
By variational methods and critical point theorems, we show the existence of two nontrivial solutions for a nonlinear elliptic problem under Robin condition and when the nonlinearty satisfies the usual Ambrosetti-Rabinowitz condition.
Infinitely many weak solutions for a mixed boundary value system with (p_1,…,p_m)-Laplacian
2014
The aim of this paper is to prove the existence of infinitely many weak solu- tions for a mixed boundary value system with (p1, . . . , pm)-Laplacian. The approach is based on variational methods.
$C^{1,��}$ regularity for the normalized $p$-Poisson problem
2017
We consider the normalized $p$-Poisson problem $$-��^N_p u=f \qquad \text{in}\quad ��.$$ The normalized $p$-Laplacian $��_p^{N}u:=|D u|^{2-p}��_p u$ is in non-divergence form and arises for example from stochastic games. We prove $C^{1,��}_{loc}$ regularity with nearly optimal $��$ for viscosity solutions of this problem. In the case $f\in L^{\infty}\cap C$ and $p>1$ we use methods both from viscosity and weak theory, whereas in the case $f\in L^q\cap C$, $q>\max(n,\frac p2,2)$, and $p>2$ we rely on the tools of nonlinear potential theory.
Ordinary (p_1,...,p_m)-Laplacian system with mixed boundary value
2016
In this paper we prove the existence of multiple weak solutions for an ordinary mixed boundary value system with (p_1,...,p_m)-Laplacian by using recent results of critical points.
Four solutions for fractional p-Laplacian equations with asymmetric reactions
2020
We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven by the degenerate fractional p-Laplacian, whose reaction combines a sublinear term depending on a positive parameter and an asymmetric perturbation (superlinear at positive infinity, at most linear at negative infinity). By means of critical point theory and Morse theory, we prove that, for small enough values of the parameter, such problem admits at least four nontrivial solutions: two positive, one negative, and one nodal. As a tool, we prove a Brezis-Oswald type comparison result.
Existence, nonexistence and uniqueness of positive solutions for nonlinear eigenvalue problems
2017
We study the existence of positive solutions for perturbations of the classical eigenvalue problem for the Dirichlet $p-$Laplacian. We consider three cases. In the first the perturbation is $(p-1)-$sublinear near $+\infty$, while in the second the perturbation is $(p-1)-$superlinear near $+\infty$ and in the third we do not require asymptotic condition at $+\infty$. Using variational methods together with truncation and comparison techniques, we show that for $\lambda\in (0, \widehat{\lambda}_1)$ -$\lambda>0$ is the parameter and $\widehat{\lambda}_1$ being the principal eigenvalue of $\left(-\Delta_p, W^{1, p}_0(\Omega)\right)$ -we have positive solutions, while for $\lambda\geq \widehat{\…
Existence of three solutions for a mixed boundary value system with (p_1,...,p_m)-Laplacian
2014
In this paper we prove the existence of at least three weak solutions for a mixed boundary value system with (p_1,,...,p_m)-Laplacian. The approach is based on variational methods.
C1,α regularity for the normalized p-Poisson problem
2017
We consider the normalized p -Poisson problem − Δ N p u = f in Ω ⊂ R n . The normalized p -Laplacian Δ N p u := | Du | 2 − p Δ p u is in non-divergence form and arises for example from stochastic games. We prove C 1 ,α loc regularity with nearly optimal α for viscosity solutions of this problem. In the case f ∈ L ∞ ∩ C and p> 1 we use methods both from viscosity and weak theory, whereas in the case f ∈ L q ∩ C , q> max( n, p 2 , 2), and p> 2 we rely on the tools of nonlinear potential theory peerReviewed